The Faculty of Mathematics and Physics
Comenius University
Bratislava

Virtual Path Layouts in ATM networks

Master Thesis

Consultant: Diplomant:
doc. RNDr. Peter Ruzicka, Csc. Martin Makuch

Cestne prehlasujem, ze som diplomovi pracu vypracoval samostatne s
pouzitim materidlov, ktoré uvadzam v zozname pouzitej literatury.

Bratislava, 2000

Acknowledgments

I would like to thank Peter Ruzicka for his great support and valuable
advice.

Contents

1 Introduction
1.1 Motivation

2 The Model

3 Survey of Results
3.1 Chainnetworks Lo
3.2 Ringmnetworks. oL
3.3 Meshnetworkso,
3.4 Treemnetworks L Lo
3.5 Hypercube topology00,
3.6 General networks Lo
3.7 Summary of previous resultso 0oL L.

4 VPLs for complete binary trees

4.1 Complete binary trees o0 oL

4.2 Lower bounds o

4.3 1-hop VPLs for complete binary trees

4.4 Asymptoticaly optimal one-to-all VPL on complete binary
treeso e

4.5 Modified asymptoticaly optimal one-to-all VPL on complete
binary trees L o

5 VPLs for butterfly network
5.1 Butterfly topology oL
52 Knownresults.
53 Lowerbounds
5.4 One-to-all VPLs for butterfly networks

6 Conclusion

11
12
12
13

14

16

16
16
17
18
20

32

1 Introduction

1.1 Motivation

The rapid development in communication technology naturaly brings new
demands from the users. To make a realization of such requests possible,
a new solution was to be found. The main problem still existing is the number
of distinct communication networks, such as ordinary telephone networks,
satelite networks used primary for mobile communication, cable television,
and computer networks.

The most promising solution to this problem seems to be the B-ISDN
(Broadband Integrated Services Digital Network), the successor of quite
unsuccessfull N-ISDN (Narrowband ISDN). N-ISDN was the first fully (end
to end) digital telephone system. However, it came too late and was offering
too few for relative high price. The B-ISDN offers solutions, where its
predecessor failed.

The main advantage of B-ISDN is the high bandwidth (from 155 Mbps),
allowing, for example, realtime video transmission. The goal, however,
is to reach gigabit rates. For such network, new technology is needed.
The standard network protocols, such as TCP/IP used in internet, wouldn’t
do the work, because they are too complex.

The new technology is called ATM (Asynchronous Transfer Mode). The
main idea is to use small fixed size packets, called cells. This simplification,
together with unreliability (no error checking and correcting in higher levels)
and simple routing method (straightforward two level hierarchy), allows
design of very simple switches operating on high speeds (due
to simplicity). The result is very high ratio of cells passing through chip
per second, implying high bandwidth.

The assuptions of no error checking/correcting are possible only when
very low error rate is achieved on physical transfer. Detecting of faulty cells
must be done, except for some applications, but it is left on the application.
The high error rate on physical medium would result on frequent identical
cell requesting from application (all faulty cells must be usually resend),
delaying the network and the application itself. Hopefully, the fiber optic
allows very reliable transmision together with high bandwidth.

Yet, at least one problem remained. As mentioned above, the routing
mechanism is very simple. Each cell has two small routing fields, called
VCI (virtual channel index) and VPI (virtual path identifier). On every
switch, there are two routing tables, one for the virtual paths, the second
for the virtual channels. As long as VPI is not null, routing is done according
to it. Then the VCI is used to choose the following virtual path on the route.
The virtual paths must be designed at the very beginning, and are never
changed (they are physicaly implemented on the switching hardware). The
virtual channels are then used to connect the network users, and are
maintained dynamically. However, each virtual channel has to be build
as the concatenation of the virtual paths.

Now the problem arises - the initial design of virtual paths to allow
communication between all interesting pairs of nodes. Moreover, several
restrictions come into the play. These are physical limits of the switches,
and network perfomance requirements. We will deal with them in this paper.

We start with definition of the model in Chapter 2. The Survey of known
results is then presented in Chapter 3. In Chapter 4, we study some virtual
path layouts for complete binary trees. These layouts are used in further
constructions of VPLs for butterfly networks (Chapter 5). The main result of
this papaer is also presented there. It is the asymptoticaly optimal broadcast
routing scheme (one-to-all VPL) for the butterfly topology. Finally, the
recapitulation of achieved results appears in Chapter 6.

2 The Model

Now, we present the model used to describe Path Layout problems in ATM
networks in more formal way. Most definitions are taken from the previous
papers (eg [1]). The communication network is represented by an undirected
graph G = (V, E), where the set V of vertices corresponds to the ATM
switches, and the set F of edges to the physical links between them. Moreover,
we have a given set ¢ of pairs of distinct nodes from V', between which a
communication must be established. We are interesting on two special cases:

e The omne-to-all case: the connection is required from one specified
vertex to all others; so (= {(r,u)lu € V,u # r}, where r is the
specified vertex (usually called the root).

e The all-to-all case: the connection is required between all pairs of
vertices; so (= {(u,v)|u,v € Viu # v}.

For the following definitions, the network is G, and the (is either
one-to-all or all-to-all case.

Definition 2.1: A wvirtual path layout (shortly VPL) W is a collection of
simple paths in G, termed wvirtual paths (shortly VPs).

From now, we distinguish between two types of VPLs, depending on
their communication patern (. We will refer to an VPL with one-to-all
communication pattern as one-to-all VPL, and to an VPL with all-to-all
communication pattern as all-to-all VPL.

Definition 2.2: The load L(e) of an edge ¢ € E in a VPL U is the
number of VPs 1 € ¥ that include e. This notion is also refered to as its
edge congestion. The load L(v) of a vertex v € V in a VPL W is the number
of VPs ¢ € ¥ that include v (vertez congestion).

Definition 2.3: The mazimal edge load L4, (V) of a VPL W is mazecpL(e).
The mazimal vertex load of a VPL ¥ is maz,cv L(v).

Unless otherwise specified, the loads in this paper are the edge loads.

Definition 2.4: The average (edge) load of a VPL ¥ is computed as

Loy (W) = %'Zz(e).

eck

Definition 2.5: The hop count H(u,v) between two vertices u,v € V in
a VPL W is the minimum number of VPs whose concatenation forms a path
in G connecting w and v. This concatenation is also called virtual channel
(shortly VC). If no such VPs exist, we define H(u,v) = co.

Definition 2.6: The maximal hop count of a VPL W is computed as

Hmaz (V) := maz(y p)ec{H(u,v)}-

The problem is to design an VPL with as small maximum hop count
and load as possible. However, decreasing hop count naturaly increases load
and vice versa, so some hop-load tradeoff is needed. The tradeoff is usually
studied in one of the either way:

e For a given network (G) and maximum hop count (Haz), find such a
VPL on G, that has lowest possible load (L,,4;) with respect to Hypaz-

e For a given network (G) and maximum load (L4,), find such a VPL
on GG, that has lowest possible hop count (H,q,) with respect to Lyqz-

We will concentrate on the first case. For our topology (butterfly), it
will be the more difficult one (with respect to asymptotic solutions), as we
will see later. The second case was already studied, and some results are
known. They are presented later.

We shall also be concerned with stretch factor. Informally, it is the ratio
between the length of the path of a VC in the physical graph (G) and the
shortest possible path between its endpoints (in). This parameter control
the efficiency of the utilization of the network. However, the exact definition
is needed to prevent some confusions, as explained below. The definition for
our case is as follow:

Definition 2.7: Let the H,q; be the upper bound on hop count in some
VPL V. For each u,v € (, we define a set

VCy,p :={7|7 15 a VC between u and v with hop count less or equal to Hpay}
Now let

dst(u,v) := min,cve, ,{the length of T in physical graph G}

And finally we get

dst(u,v)
¢ = m(],.’l’}u,UEC {m}

where d(u,v) is the distance between u and v in G. The ¢ is called stretch
factor of the VPL W (with respect to H,,qz)-

This definition says, that hop count has a higher priority than stretch
factor, as shown on the following figure:

B C D

connecting vertices A,D

Hinaz =2 ~ ¢:
Himaz =3 ~ ¢ =

N o N Tt

Suppose, we are interested only in connecting vertices A and D. If we have
upper bound of Hpee = 2, then the only possibility is a two-hop VC
consisting of VPs (A,C,B) and (B, A,C,D) of length 5. However, the
shortest path between A and D (path (A, C, D)) has a length of 2, so ¢ = ;
On the other hand, if we allow greater upper bound H,,q, > 3, we could
connect A and D with three-hop VC using VPs (4, B), (B,C) and (C, D)
with ¢ = 3.

3 Survey of Results

In this section, we summarize results related to this work, namely to the

design of VPLs in ATM networks. Because of great diversity of results,

my arrangement should be considered informal. The basic criterion is the

topology of the network. Besides topology several other factors are considered:
directional /nondirectional links, communication patterns, and the type of

the results. In general, we will concentrate on the following parameters:

e 7, the maximum hop count allowed for connection (defined previously
as Mmaa)

e L, the maximum load of edge allowed for VPL (defined previously as
Emaz)

e ¢, the stretch factor, or how many times are the routing routes longer
than shortest paths.

3.1 Chain networks

For this subsection, assume N to be the length of the chain.
e bidirectional links, one-to-all communiaction

o Simple result £ < H x N%, where H = O(1), comes from fairly
straightforward construction. It is asymptoticaly optimal layout.
See eg [3] and/or [6].

o With more complicated design, it is possible to get also optimal
solution. However, the proof is somewhat more difficult. The

results are:
L+H-—1 L+H
N <

for £ = 0(1), and

L+H+1 N < L+H
H H
for H = O(1). These two are the only truly optimal (up to

constants, not only asymptoticaly) results already known. See

[10].
e bidirectional links, all-to-all communication

o For £ = 2 there is a result v/ 2N1 —d<H<V 2]}]4— 2, and generally
for £=0(1) thereis x NT < H < L x NZ. See [5].

o Forany e > 0 and £ > log'*¢ N thereis H = @(llgggg), asymptoticaly
optimal layout. See [4].

o The reverse case (given H, find £) is not directly mentioned.
e unidirectional links, all-to-all communication
o For £L=11it holds § +log N <H < & +1log N + O(1). See [8].

o Generally, for £ = O(1) it holds # = Q(N?7=T) and
1
H=0(Lx N2z-1). See [8].
o The reverse case (for H, find £) was probably not yet studied.

However, since £ is constant in the above case, the result is
asymptoticaly optimal for a given L.

For all the above cases the routing is done along the shortest paths (¢=1).

3.2 Ring networks
Now, let N be the number of vertices in a ring.
e bidirectional links, one-to-all communication

o Since we still route using the shortest paths, we can treat this
problem as the one-to-all case for chain with length % Small
technical problem arises for even N. However, it won’t be a
problem at all for asymptotical solutions.

e bidirectional links, all-to-all communication

o For H = O(1) we can get

llN%SLSH(H-l_l)
32H 7w 2

X

N
what is, f(2)r constant H, an asymptoticaly optimal layout with
L=06(N%n). See [2].

e unidirectional links, all-to-all communication

o For £L =1 we have H = 2v2N + O(1). See [§]

o In a general case £ = O(1), it holds H = Q(N%) and

H = 0(L x N%), what is, for constant £, again asymptoticaly
optimal. See [8].

3.3 Mesh networks

Further, the a,b are the dimensions of the mesh. In the case of a = b, we

set VN =a = b.

e bidirectional links, one-to-all communication

2=

o For a mesh with H = O(1) we have a lower bound of £ = Q((%)
and a layout with £ < H x N7. See [1].

)

e bidirectional links, all-to-all communication

o Quite easy construction (for H = O(1)) leads to a layout with
2
Eza%:bhb,wherehﬂ: hy =H — h,. So for a = b we

get £ = O(H x N#%). See [2].

o For £ = O(1) and a = O(1), we have H = @(bﬁ). Further, for
the mesh VN x /N and £ = O(1), we get H = O(log V'N) =
O(log N). See [5].

o Previous result is for arbitrary £ > 2 generalized to H = O(

See [4].

log N)
logL/*

e unidirectional links, all-to-all communication
o For £ = O(1) we have H = O(log N). See [8].

o For torus and £ = O(1) we get H = Q((ab)ﬁ) and H = O(axbﬁ).
See [8].

o The reverse case (L for given H) is again not considered.

3.4 Tree networks

For trees, let N be the number of their vertices.
e bidirectional links, one-to-all communication

o It is shown in [10], that optimal one-to-all VPL for chain of length
N can be transformed into an one-to-all VPL for a tree with IV
vertices. The ¢ is still 1, H and £ remain the same or better.
This makes some upper bounds for trees in both cases (known
H, find £ and vice versa). However, these layouts may not be
optimal for trees.

o A recursive layout leads to £ = O(H x N%) It is also proven, that

L=Q(—r x N%), where A is the maximum degree of any
AX2H
vertex in tree. For 7realistic” network (A and H bounded by

constant) we have £ = @(N%). See [6].

e bidirectional links, all-to-all communication

o For L, an upper bound of 1 N7#% and a lower bound of

227 —1)

L=Q(——F+N %) are shown in [6]. For "realistic” networks,
AX(8H)H

it leads to £ = G)(N%).
o In the mentioned solutions all routes are using the shortest paths,
so ¢ = 1.

e unidirectional links, all-to-all communication

o For £ = 2 we have a lower bound of H > %N% and upper bounds of
H < 32NF and H < DG% log N, where D¢ is a diameter of the
graph. See [8].

o Generally, for £ = O(1), we have a lower bound of H = Q(D(;ﬁ),

upper bounds of H < 8L x NTZ=T and H — O(D(;Ml—f1 x log N).
See [8].

3.5 Hypercube topology

Here, the N denotes the dimension of the hypercube. So the number of
vertices is 27V,

e bidirectional links, all-to-all communication

o For 2 < L < N we get H = O(;-2x). See [4].

log N

o For the rest £ we have H = O(;-2). Again, see [4].

log £

3.6 General networks

The N will denote the number of vertices of a graph G.

e bidirectional links, one-to-all communication

o There is a construction satisfying £ < VHN™ 7% See [6].

o The decision problem was studied for the existence of the one-to-

all layouts for H and £ in arbitrary graphs with ¢ = 1. It was
shown, that there is a polynomial algorithm for designing such
VPL in the case of H =2, L =1 and H =1, any L. In other
cases, the problem is NP-complete. See [9].

e bidirectional links, all-to-all communication

o Recursive construction for a given k leads to a VPL with ¢ = 8k

[e]

[e]

o

o

2

and Ly = O(H x k x log N x N%+H), where Ly is the vertex
load. See [1].

It is shown in [5], that H > BN 1 for any £ > 1.

og(AL)

The VPL with ‘H = O(M) was constructed for A > 3. It is

log £
asympoticaly optimal in the case of networks with unbounded
A, Dg = O(logN) and any £ > A. For any L > 1 and

D¢ = O(log N) is constructed a VPL with H = 6(11?3;]2) See [4].

In [6] is a recursive construction for graphs with bounded treewidth.

2

The result is £ = O(—2ZN™__) where k is the bound on the
2((1.5)H —1)

treewidth.

Several other problems were studied, for instance dynamic maintenace

of the links. The fault-tolerant VPLs were considered too (see

11]).

3.7 Summary of previous results

Though quite a couple of interesting results were already presented, there
is still a much more left for future research. The following list shows some
possibilities:

There are still topologies not considered yet in detail (just general results
could be applied on them). An example is a butterfly studied in
Chapter 4.

There are still problems, which are not solved even asymptoticaly optimal,
so the gap could be narrowed or closed. Eg tree networks for not
"realistic” case.

There are results in one direction (eg given £, find H) and not in another.
This is also the case for butterfly studied in this paper.

It could be interesting to replace stretch factor by some other measure
describing the difference between the shortest and used routing paths
(eg dilation).

Mostly, just two communication patterns are studied. The one-to-all
and the all-to-all case, though some other are of interest too (eg
permutation pattern).

Usually, it is assumed to have constant maximal £ for the whole network,
though the different switches could have different abilities, eg future
switches may allow higher congestion. Also, it is common to assume
the same capacity (bandwidth) for all the links and in both directions,
though different services demand different bandwidth (and sometimes
also in different directions).

There are not results for any compound communication patterns, which
could for instance favour some pairs of vertices (eg some priority links
for important pairs or better paying customers).

The case of bidirectional links was more studied, though some unidirectional
results already exist.

Very few results consider faulty links.

There is probably only one optimal (not only asymptoticaly) layout, the
one-to-all VPL for chain topology.

However, on the other hand, it is necessary to consider also the simplicity of
the model. Since too general model may be too complicated for the design
and analysis of VPLs. So it might be good to consider, which property is
quite useful (eg in real ATM networks) to model, and then, perhaps, add it
to the model.

4 VPLs for complete binary trees

Now we will concentrate on the design of VPLs for complete binary trees.
This case is fairly simple and was already studied for more general case
(arbitrary trees, eg [3],[2]). Though these results were already presented (at

least in general case), we deal with them again, since they are quite useful
for the design of VPLs on butterfly network.

4.1 Complete binary trees

Here we present our labeling conventions for complete binary trees to achieve
easier description of the design of VPLs on this topology.

Let T'= (V, E) be a complete binary tree with IV vertices, V = {v1,...,un }.
Then N = 2! — 1, where [is the depth of T

We number the levels of T from 1" up to 'l’ (notice that | = Ig(N + 1)),
where the root is the only vertex on the first level. We also label the vertices,
top-down and left-right, giving label ‘1’ to the root. So the root is referenced
to as v1 € V and a vertex vy € V, if not a leaf, has sons voy, and wvopy1, and
if not a root, has a parent v|y/s).

Let e € E be an edge of T. We define its level to be equal to the level
of the vertex incident with e with smaller label (so the two edges from root
are on the first level).

Further, for any vertex u € V, T}, denotes the subtree of T" rooted at w.

4.2 Lower bounds

Theorem 4.1: Let T' = (V, E) be a tree network with N nodes rooted at
r, let A be the maximum degree of a node, and take any h > 1. For every

one-to-all VPL from r with h hops, there exists an edge e € E with load
L(e) = Q- Nw).
AR

Proof: See [6] and/or [3].

Theorem 4.2: Let T be a complete bin%ry tree with the root r. For every
one-to-all VPL from r it holds £ = Q(N#).

Proof: A special case of the previous theorem. Let 1" be a complete binary

tree, h = H, so A = 3. Now, fromlthe existence1 of such edge e and definition

of Lyaz, we have L = Q(L N#). Since 3% is bounded by a constant
3%

between 1 and 3 for H > 1, we have £ = Q(N%)D

Theorem 4.3: Let T' = (V, E) be a tree network with N nodes, let A be
the maximum degree of a node, and h > 1. For every all—to;all VPL with h
hops, there exists an edge e € E with load L(e) = Q(--N#).

AT

Proof: Again, see [6] and/or [3].

Theorem 4.4: L(gt T be a complete binary tree. For every all-to-all VPL
it holds £ = Q(N#).

Proof: A special case of the previous theorem. Let T be a complete binary
tree, h = H, so A = 3. Now, from the ex1stence of such edge e and definition
of L4z, we have L = Q(NH) Since 3% is bounded by a constant

between 1 and 3 for H > 1, we have £ = Q(N%)D

4.3 1-hop VPLs for complete binary trees

Now, we will look closer at VPLs for complete binary trees with H,,,, = 1.
Although not very interesting as a special case, they are usefull as a basic
block in future constructions.

Layout 4.5: Firstly, we describe the most basic one-to-all layout connecting
root with all other vertices. Let T' = (V, E) be a complete binary tree (with
the root v1). Our VPL W will consist of the following simple paths: For each
vertex vy € V., v # vy (vg is not a root), add the shortest path from vy to
vi. This path is unique, since T' is a tree. We can write it formally as

={Y = (vk,vy2)5---5v1); v €V k# 1}

Analysis of VPL: For the above one-to-all VPL W, one can easily see, that
Hmaz = 1 and Liar = [N/2], since the largest load is on the two topmost
edges ((v1,v2) and (v, v3)), each sharing VPs to the whole subtree of | N/2]
vertices. Since we are interested mostly on asymptotical results, it will
usually suffice, that L., = O(N). It is easy to see, that routing is done
along the shortest paths, so ¢ = 1.0

Layout 4.6: Although previous layout is obviously optimal (for H, e, = 1,
not only asymtotically), we present another assymptoticaly optimal one-
to-all layout (again from the root v;) which will be exploited in further
constructions. Let T' = (V, E) be a complete binary tree. Now we connect
every vertex vx € V with all the vertices in its subtree (this was done only
with the root v; in the previous layout). Formally, our VPL W is

k

U = {lYp = (0, V|kj2fs -+ Vm); Vkyvm €V FjEN : m = {2—]J}

Simply written, vy must be in the subtree rooted at v,,, but k # m.

Analysis of VPL: In this layout, we only added some new paths to the
previous one, so the routing is still using the shortest paths and ¢ =

Also Hpar = 1. To determine the L,,,, is somewhat more difficult. Let
e € E, e = (vg,vp), a < b w.lo.g., be an edge in E on ith level, 1 <i < [.
Let W be a set of vertices on the path from the root v; to the vertex v,
(W = {va,v(4/2]5---,v1}). In the VPL W, every path, which includes e,
starts at some vertex from W, since only vertices from W have e in their

subtrees. Each vertex u € W is directly connected (by path in ¥) with all
vertices 'below’ e (with all vertices in subtree rooted at v;). No other paths
use e, since each path, which uses e, must end in the subtree rooted at vy,
and these paths were mentioned above (see Fig.4.1).

level 1 — v1 —root
level 2 ——
<—— path v, ...,v, contains i vertices
Va
level i — edge e
Up

Te - subtree ’below’ e rooted at vy
contains 2/~% — 1 vertices

Fig.4.1: schematic picture of the tree T

Since the edge e = (vg,vp) is on the ith level, the path from vy to v, has i

vertices (v, is on the ith level). These vertices form W, so |W| = i. The

subtree T, rooted at v, has 2/~? — 1 vertices. Since each vertex from W

has direct connection to every vertex in T, the total number of paths in W,

which include e, is equal to |W|.|T.| = i(2!=* — 1). So we have

N -1 N
2

Lle)=i(2t—1) <2ttt -1y =212 <ol] = 5 < I

J

Thus, it holds L4, = L%J, since it is the load of the two uppermost edges
((v1,v9) and (v1,v3)). Asymptoticaly, it still holds L4, = O(N)O

4.4 Asymptoticaly optimal one-to-all VPL on complete binary
trees

Now we will use Layout 4.5 as a basic building block for constructing
asymptoticaly optimal one-to-all VPL for complete binary tree rooted at vy
for any given H,,4,. Again, the ideas are taken from constructions already
presented (eg [3]) in more general case.

We need following definition for next layout:

Definition 4.7: Let T' = (V, E) be a complete binary tree with the root v;.
Let u € V be an vertex of T'. For any k € N, k > 1, we define

T(u, k)= (V' E"
to be a subgraph of T', with vertices
V' ={wlw € T, A dp(u,w) <k}

where dr is the distance in the tree T'. The set of edges
E' = {(a,b)|(a,b) € EANa,be V'}

comes directly from T'. It is easy to see, that T'(u, k) is a complete binary
tree with the depth of k£ + 1 or smaller (if k£ is greater than the number of
levels below the vertex u).

Layout 4.8: Let ' = (V, E) be a complete binary tree with a root v1. Let H
be the upper bound for hop count in VPL on T'. We will construct one-to-all
VPL on T from v; as follows:

Firstly assume, for simplicity, that [— 1 = kH, so the H divides [— 1
(notice, that there are [— 1 levels of edges in T'). Now we partition the tree
T into smaller complete binary trees, each with depth k 4+ 1, as follows: For
any vertex v; on level m, m = ck + 1, ¢ € Ny, if v; is not a leaf, take a tree
T (v, k) from the previous definition. By S we denote arbitrary tree among
them. There would be H levels of such trees, as shown in Fig.4.2:

Each St is a complete binary
tree with depth k£ 4+ 1 and k
2k+1 _ 1 vertices

kH=1-1

A AL

Fig.4.2:Tree T partitioned into the trees St

The roots of the trees T'(v;, k) are usually called pivots. Notice, that each
leaf of T'(v;, k) is identical to a root of some tree T'(vj, k) from lower level
(except for downmost trees). Now we construct one-to-all VPL W, 4y for
each of the T'(v;, k) using Layout 4.5 . The VPL W for the tree T is then
union of all layouts for trees T'(v;, k).

Analysis of VPL: Let u € V be a vertex of the tree T. From the previous
construction, there exists at least one (at most two) tree T'(v;, k), which
includes u. Now construct a path P from the root v; to the vertex v; in
T (the path is unique, since T is a tree). The path includes at most H
pivots (the first is vy, last v;). Every pivot v; on P, except for v;, is directly
connected to the succeeding pivot in P by single path from W, since in the
tree T'(vj, k) the pivot v; is directly connected to every leaf (see Layout 4.5
), and the succeeding pivot is one of the leaves. So we can get from the root
v1 to the vertex v; in at most H — 1 hops. From v; we can get to the vertex u
on single hop due to layout Wp(,, xy, which is included in W. So Hyap = H.

Since the path constructed above was also the shortest path between the
root v; and the vertex u, we get ¢ = 1.

In the case of load, no two trees T'(v;, k), T'(vj, k) have a common edge,
so the load is the same as in every tree T'(v;, k). The load is, recalling from

Layout 4.5 ,
k1 _ Ny# .
o[£

since each tree T'(v;, k) has 281 —1 vertices and 2F7 = 2!~! = % Comparing
with the lower bound, our layout is asymtoticaly optimal.

For general case | — 1 = kH +m, 0 < m < H, the design is only
slightly modified. Recall, that we have H levels of trees T'(v;, k) in the
previous simplified case. Now, we need two different types of trees, namely
T(v;, k) and T'(v;, k + 1). So we replace first m levels of trees T'(v;, k) with
corresponding trees T'(v), k+ 1) (with the depth equal to k + 2) keeping the
property, that the trees on neighbouring levels have only one common vertex
(the pivot). The H —m downmost trees remain of depth £+ 1. The resulting
Hmar and ¢ don’t change (there are still # levels of trees T'(vj;, k[+1])). The
load is twice as large due to increasing the depth of some trees to k+2. This,
however, don’t affect the assymptotical result.O

4.5 Modified asymptoticaly optimal one-to-all VPL on complete
binary trees

Now we will add some VPs to the previous layout, similary as we did with the
1-hop case. This modification does not affect the asymptotical optimality,
though it is quite useful for the butterfly network.

Layout 4.9: Let 7' = (V, E) be a complete binary tree with the root v;. Let
‘H be the upper bound on the hop count for VPL on T'. We construct one-
to-all VPL ¥ from v; exactly as in the previous Layout 4.8 , only replacing
Layout 4.5 for trees T(v;, k) (Wr(y, 1)) by a Layout 4.6 .

Analysis of VPL: Since we only added new VPs to the previous layout, it
is still possible to connect the root with any vertex by an VC of at most H
hops. The routing is still possible among the shortest paths (¢ = 1). Only
the load of T'(v;, k) is taken from different layout. However, it is still the
same, since the L,,,, of the layouts Layout 4.5 and Layout 4.6 do not
differ.

Notice, that in this layout, there exist also connections (VCs) from
arbitrary vertex u to all vertices in its whole subtree with at most H hops.

Morevoer, this is also an all-to-all layout, connecting any pair of vertices
in T" with at most 2H hops using the shortest path, what makes it asymtoticaly
optimal all-to-all layout.O

5 VPLs for butterfly network

This section is the heart of this paper. The design of VPLs for butterfly
networks was not studied yet, though some results are already known as a
consequence of more general theorems. We will present some new lower and
upper bounds together with releated VPL designs.

5.1 Butterfly topology

Here we describe the butterfly topology and introduce our labeling conventions
to simplify the rest of the section.

The butterfly network BF,, consists of n2”~! vertices, usually represented
by n rows and 2" ! columns. We will label the vertices by their row /column
position, exactly, let v be a vertex on the rth row and in the cth column.
Then we label v as v,.. We now define the interconnection of vertices
recursively.

BF; network is a single vertex. Now let C',D be two BF,, networks. We
construct BFj, ;1 as follows. Add 1 to each row of C and D, so they now
have rows 2,...,n + 1. Also add 2"~ ! to each column of D. Now add new 2"
vertices vy 1, ...,v1 2n. Finally, add following edges to the resulting graph:

e Vi, 1 <i<2" add an edge (v1,,v2,)
e Vi, 1 <i<2" 1 add an edge (v1,5,V9,i49n-1)
e Vi, 2" 1 4+ 1< i< 2" add an edge (v1,i,V9,_9n-1)

The process is schematicaly shown on the following figure:

) 2™ new vertices 1,2 1 1 2 3 4 5 6 7 8
q “ e |§| e)

[2.1] 2

3
BEF, BEF,
4
C D
Construction of BFy, 1 BF, network

We will sometimes refer to the rows as levels, as we did on the trees.
The number of rows/levels is denoted by n, or [(as in trees), and the total
number of vertices as N, so N =n2" ! =201,

Now we will look at some properties of the butterfly topology, which will
be helpful later. Firstly notice, that the butterfly is the same in the topdown
and bottomup direction, in the sense, that there exists an isomorphism
relabelling the vertices and reversing their topdown orientation. Also, all
the vertices in the same row are symmetric in similar way (the order within

a row is not significant). Now we define some special subtrees included in
the butterfly network.

Definition 5.1: Let BF), be a butterfly. For any 1 < i < 2"~! we define a
tree T; corresponding to the vertex vy ; as follows: We set the vertex vy ; to
be a root of the T;. Now, for every vertex v, already in Tj, we recursively
add its two neighbours in BF,, from the level b + 1, unless b = n, when the
Vap 18 a leaf in T;.

Similary, we can define the tree TZI corresponding to the vertex v, ; going
bottom-up. All these trees are complete binary trees with the depth n and
2" —1 = 2% — 1 vertices. These trees make a backbone used for some of
our VPLs. On the butterfly, we will be interested in two cases:

e one-to-all VPLs from any vertex v, .

e all-to-all VPLs

5.2 Known results

As mentioned above, no special designs for butterfly were constructed.
However, several general results offer some solutions. We will look closely
only on one such result, which affects butterfly topology in significant way.

Theorem 5.2: Let G be a graph of order N with A = O(1) and diam(G) <
O(logN). Then H = ©(YY) for any L.

logL
Proof: See [4].

It is easy to check, that butterfly network satisfies the conditions of this
theorem, so the result can be apllied for it. However, the construction from
[4] does not use only the shortest paths. In this paper, we will study the
reverse problem for butterfly topology, namely to bound £ for given H.

5.3 Lower bounds

Firstly, we use some lower bounds from trees and apply them on the butterfly
topology.

Lemma 5.3: Let ¥ be an one-to-all VPL on butterfly BF,, from the vertex
vy, with the maximal load of £, the maximal hop count of H and stretch
factor of one (¢ = 1). Then there exists a one-to-all VPL ¥; on complete
binary tree T' with n levels and 2" —1 vertices from the root r with the same
maximal load L, the same maximal hop count H and the stretch factor of
one.

Proof: Let T =T (T from Definition 5.1), since both are complete binary
trees with n levels. Now we can construct ¥, as

U, ={¢jp e UAVee: e Ty}

so we will restrict only to the VPs inside the 77. The U, has clearly a load
at most L, since it is derived from W, omitting some VPs.

Now look at the VCs in Wy, namely, if the connection to all the vertices
in Ty from vy ; is still possible. Let u be an arbitrary vertex of tree T7. Then
there exists a VC 6 connecting vy ; and u (using VPs from W). Let ¢ € 0
(¢ is a VP in ¥). We will show that ¢ € ;.

Notice, that there is unique shortest path between v;; and u € T}
in BF,, because the path must go from v;; only downwards (otherwise,
it wouldn’t be the shortest path). But all paths from v;;, coming only
downwards, are in 77, since there are allways two possibilities of going down,
and both are in T by its definition. So, the shortest path between v ; and
u in BF, is also in T7. And since 717 is complete binary tree, this path is
unique.

Now recall, that 6 must go over the shortest path between vy and w.
This path is in 77, so is the 6 too. However, this imply, that) € T, due to
1 € 0. Thus, finally we have) € U; from the definition of Wy.

As a result, all VPs necessary for connecting v1; and u are also in the
derived VPL W;. The routing is done using the same VC 6 as in ¥. So the
hop count is at most H, and the stretch factor is equal to one.O

Theorem 5.4: Let BF}, be a butterfly with N vlertices. For every one-to-all
VPL from 1,1 with ¢ = 1 it holds £ = Q([;75]7%).

Proof: Let W be an one-to-all VPL for BF,, with ¢ = 1, maximal hop count
‘H and a load L. From the previous Lemma 5.8 , there exists an one-to-all

VPL for complete binary tree with 2" — 1 vertices with the same H, £, and

¢. From the lower bound for trees (Theorem 4.2), we get L = Q([2" — 1]%),
what leads to:

L= (2 — 1) = (2" 1E) = o m Y
since N = n2"~!. We have also
lg(N) = lg(n2" ') =lg(n) +n — 1 = O(n)

and next

lg(N) =0©(n) = n =06(lgN)

so finaly mixing these results

proving the theorem.O

Theorem 5.5: Let BF}, be a butterfly with N vertices. For every one- to-all
VPL with upper bound on hop count H > 2 it holds £ = Q([]ngﬂ N) =

Q(NH)

Proof: Let r € BF,, be any vertex of BF,,. Let ¥ be an onle—to—all VPL from
r for BF,, with load bounded by function £ = O([ZQLN]ﬁf(N)) Suppose
that f(N) = o(lg% N).

Since the degree of any vertex in BF is bounded by constant (A4, = 4),

on one hop from r we can get to at most O([lgN]if(N)) vertices (due to
the upper bound for £). On the second hop, we can get from these vertices

to at most O([;y N]%fQ(N)) vertices and so on. After { — 1 hops we can
reach at most O([lg_N] 71f7"*1(N)) vertices.

Let S7 be a set of vertices reached from r on at most H — 1 hops in
the VPL W. Let Sy = BF), \ S;. There are at least Q(NN) vertices in Sy,

since |S1| = O([qu] ﬁlfﬂ’l(N)) and f(N) = o(lg%N). These sets are

connected with at most O([l N] ﬁlfH*I(N)) edges, since every vertex in
S1 has at most four outgoing edges. See Fig.5.2.

S S,

\

O[5 7 7 1(V)) Q(N)

vertices

O ~1(Y) vertices
9N

/ edges

Fig.5.2: Edge Cut for sets S; and S,

The vertices in Sy must be connected on last single hop to vertices in 5.
Since there are Q(N) vertices in So, there must be at least Q(N) virtual

paths going through O([MLN]%]”H*I(N)) connecting edges. Thus we get
lower bound for the load of these connection edges equal to
Q(N) N
N = N 1
O[5) 1)) (1251 ()

£:

1
For f(N) = g% N we get L = Q([l]”lg%N). At the beginning of

the proof we assumed, that f(N) = o(lg%N). So the edges on the cut
L
have load at least £ = w([lglN] ""lg%N). This is a contradiction, since we

supposed, that £ = O([2]% f(N)) with f(N) = o(lg%N) for all edges

in VPL U. 1Thus for all one-to-all VPLs for BiFn with load bounded by
L= O([lgiN]ﬁf(N)) we must have f(N) = Q(lg# N) proving the theorem.O

Corollary 5.6: Let BF,, be a butterfly with N vertices. For ever alll—to—all
VPL with upper bound on hop count H > 2 it holds £ = Q([lqlN]ﬁlgﬁN) =

Q(N).
Proof: Since every all-to-all VPL is also an one-to-all VPL from any vertex,
the bound comes directly from the previous theorem.O

5.4 One-to-all VPLs for butterfly networks

In this section, we concentrate on one-to-all VPLs for butterfly networks.
Firstly, we will look at some layouts connecting the vertex v;; with the
rest of the network. Later, we generalize these results for any root v; j. We
will study only layouts with H,,4; > 2, since construction of 1-hop layouts
is straightforward (connect v; with every other vertex using some shortest
path, this is always asymptoticaly optimal layout with £ = O(V)).

We start with an interesting layout, which is both simple and quite good.

Layout 5.7: Let BF,, be a butterfly network. Let H > 2 be an upper bound
on the hop-count. We construct an one-to-all VPL from vy ; as follows:

1. Start with empty VPL ¥

2. Construct an VPL for complete binary tree 77 from vertex vy with
upper bound for hop-count equal to H — 1 using Layout 4.8 . Add all
VPs from the VPL for T} to the VPL W.

3. For each column c of BF,,, let v;_ . € T} be a vertex from 77 on column
¢ with the minimum possible row, exactly

i = min{ilv; . € Tt}

Add paths (vi, ¢, Vi.—1,c),- - - »(Vig e Vie—1,¢5- - -, U1,¢) to the VPL W (these
are one-hop layouts for chains (v, c,...,v1,)).

The resulting VPL is schematicaly shown on the Fig.5.5.

additional paths from step 3

‘\

<
—
=

3

- Layout 4.8 for Ty
o (step 2)

- ——— - ———9p-————»
I

e - ———-9o-———-9

[
I
I
T I
I
o

I
I
I
I
° ®

Fig.5.3: Basic one-to-all layout for butterfly

Analysis of VPL: Firstly, we prove the correctness of this layout. We use
the following lemma:

Lemma 5.8: Let BF,, be a butterfly. Now take any vertex v, . € BF, \ T}.
Then 7 < 4., where 4. is the same as in the previous layout.

Proof: Suppose, that ¢ > i.. From the definition of i, we get v;, . € T1.
Now, from definition of T}, all neighbours of v;, . in level i, + 1 are in T7.
So vj,4+1,. € T1. By induction, any vertex vg., k > i, is in T7. This is a
contradiction, since v; . € BF, \ T1.0

Now, we show that we can get from vy to any vertex v; . in at most H
hops. Let v;. € BF, \ {v11} be any vertex in BF),, except the root v; ;.
There are two possible situations.

Firstly assume, that v; . € T7. Then, we can get to the v; . by at most
H — 1 hops using the shortest path. This follows directly from Layout 4.8 ,
which is included in VPL U,

Now, let v; . € BF,,\T;. We connect v; ; with this vertex through vertex
Vj,c. There is a connection from vy 1 to v;_ . with at most 4 — 1 hops using
the shortest path, since both vertices are in T (see previous paragraph).
Now we prolong this route by a path (v, ¢, vi,—1,,...,0ic) (remember, that
from Lemma 5.8 it holds i < i.). This path is in VPL W due to the step 3 of
layout construction. The resulting connection from vy ; to v; . has at most
H —1+1="H hops. It is also easy to check, that it uses the shortest path
between these vertices (the shortest paths in butterfly graphs are studied
for example in [7]).

The last thing remaining is the load of this layout. The load of the
Layout 4.8 is O(N%) for a tree with IV vertices and hop-count at most H.

In our case, the tree T has O(%) = O(lqlN) vertices and the upper bound

for hop-count in this tree is H — 1. So the resulting load for this tree from

the step 2 of construction of VPL W is O[] 7). All paths from the
second step of construction use only edges of 7;. On the other hand, the
paths added in step 3 have no edge in 77, so their load is independent from
the load of T7. In each column, we have at most n edges forming the chain.
The greatest load in each column c is on the bottom-most edge (v;, ¢, vi, —1,¢)
and is at most 7 —1 (the number of paths from v;_.). So the final load is the
maximum of loads from steps 2 and 3, since no paths from different steps

have a common edge.

N

L= marI:(O(llg—N] ", 0(m)

and since n = O(IgN) (see Theorem 5.4) and IgN = O([;X%] 7 T), we have

lgN
at last
N | %1
£ o [@_N])

with the hop-count bounded by H and ¢ = 1 as shown above.

Claim 5.9: Let BF,, be a butterfly network. Let 7 > 2 be an upper bound
on the hop-count. According to the previous layout, we can construct an

1
one-to-all VPL from vy for BE, with £ = O([;25] 7).

Now, we will enhance previous layout a bit, giving better asymptotic
result. The main idea is to connect the lower level of trees in the layout for
Ty directly with the chains from step 3, saving one hop. The hop is used to
increase the upper bound of hop-count for the tree T7.

Layout 5.10: Let BF,, be a butterfly network. Let H > 2 be an upper
bound on the hop-count.We construct an one-to-all VPL from v ; as follows:

1. Start with empty VPL ¥

2. Construct an VPL for complete binary tree T7 from vertex vy ; with
upper bound for hop-count equal to H using Layout 4.8 . Add all VPs
from the VPL for T} to the VPL W.

3. For each column c of BF,,, let v;_ . € T1 be a vertex from T on column
¢ with the minimum possible row, exactly

i = min{ilv; . € Ty}

If there exist connection form vy ; to v;, . with at most # — 1 hops (in
the layout for T7), add paths (v, c.Vi.—1.c)s - s(Vie,es Vig—1,0s -+ V1,c)

to the VPL W (these are one-hop layouts for chains (v;, ,...,vi)).
This is the case, when v;, . is not in the lowest level of trees in Layout

4.8 (ic <n—k).

4. For the rest vertices v;_. (not included in the previous step) find the
pivot v; ; of their subtree in the Layout 4.8 . Now, for each path
(Vijs---, i) already in VPL W (in fact, there is only one such path),
add paths

(,Ui,ju e 7vic,07 ’Uicfl,c)u R (Ui,ju st 7vic,ca ,Uicfl,w st 7,01,0)

so there is one-hop connection from the pivot v; ; to any vertex vy, .
for m < i,.

Analysis of VPL: Firstly, we show that we can get from v;; to any vertex
;¢ in at most H hops. The proof is similar to the one in the previous layout.
There are three kinds of vertices:

e v; . € Ty: The fact follows directly from the correctness of Layout 4.8
and the fact, that it is used in VPL W for the tree 7.

e v; . € BF,\ T} and the corresponding v;,_ . is reachable from vy ; in at
most H — 1 hops (using layout for T7): We use the VC from T} which

connect vy, and wv;, . prolonging it with path (vi e, vi,—1,c,...,ic)
from step 3 of construction. Remeber, that from Lemma 5.8 it holds
1 < 1.

e v;. € BF, \ Ti and the corresponding v;, . is reachable from v;; in
H hops (using layout for T7): We take the VC from 77 which connect
vi,1 and v;, .. The last path in this VC is the path (v, ;,...,vi.),
where v, ; is the pivot for the subtree (in Layout 4.8 for T) which
contains the vertex v; .. From the step 4 of construction, there is a
path (Vm s ..., Viges Vie—1,05- - -, Vire) in VPL W. We use this path to
replace the last path (v, ;,...,v;,) in VC between vy ; and v;, .. The
resulting VC connect v1,; and v; . with at most H hops.

It is easy to check, that all above connections use the shortest paths in BF),,
like in the previous layout. We will take look at the load now.

The paths from step 3 have no common edge with any path from other
steps. The worst load for them, as in the previous layout, is O(lgN).

Now we will look at the edges in the tree T7. For any subtree from Layout
4.8 , except trees on the lowest level, there are only paths from step 2, with

1
the total load of O([lgLN] #). For the subtrees on the lowest level, each path
is in the step 4 replaced by at most O(lg/N) paths, so the load is at most

1
O([lglN] #]gN). The final load is the maximum of the previous three loads,
so we get

slightly better than the previous result. Comparing with the lower bound,
we have only logarithmic factor between them.

Claim 5.11: Let BF), be a butterfly network. Let H > 2 be an upper bound
on the hop-count. According to the previous layout, we can construct an

one-to-all VPL from v, for BF, with £ = O([lglN] %lgN).

Now, we are ready to present an asymptoticaly optimal layout for the
butterfly topology from the vertex v;;. The main idea is to shrink a bit
the lowermost level of trees in the VPL design for 77, since there are the
most loaded edges. This will, however, increase somewhat height of the trees
from upper (not lowermost) levels. The layout is identical to the previous
one (Layout 5.10) except for the step 2 of construction.

Layout 5.12: Let BF,, be a butterfly network. Let H > 2 be an upper
bound on the hop-count. We construct an one-to-all VPL from v;; as
follows:

1. same as in Layout 5.10

2. Construct an VPL for complete binary tree T from vertex vy with
upper bound for hop-count equal to H using slightly modified Layout
4.8 . In the Layout 4.8 we divided the tree T} into H levels of
trees with depth equal to L%J +1 or L%J + 2 (I is the depth
of T1). In our modification, we increase the depth of trees from
Layout 4.8 by a factor of lglg%N (N is the number of vertices in
the whole butterfly) except for the lowermost level. The lowermost
level is decreased by a factor of (H — l)lglg%N, so the number of
levels does not change. Exactly, the topmost H — 1 levels of trees have
a depth of {% + lglg%NJ + 1[+1] and the lowermost level of trees
have a depth of [&1 — (H — 1)lglg% N + 1[+1]. See Fig.5.4. Finally,
add all VPs from the VPL for T3 to the VPL W.

3. same as in Layout 5.10

4. same as in Layout 5.10

=1 4 jglgT N
H

‘H — 1 upper levels

=14 glgH N
H

lowermost level A A [’Tl — (H — 1)lglg® N

Fig.5.4:Tree T partitioned into the levels of trees

kH=1-1

Analysis of VPL: We can get from vy ; to any vertex v; . in at most H hops.
The proof is exactly the same as in the Layout 5.10 . We will concentrate
on the load now.

The paths from step 3 have are edge disjoint with any path from other
steps. The worst load for them, as in the previous layout, is O(lgN).

Now we will look at the edges in the tree T7. For any subtree from the
modified Layout 4.8 for T, except trees on the lowest level, there are only
paths from step 2. Their load can be computed as:

1
N H
lgN]

_ 1 _ 1
upper levels : £ = O(Q(ITnglg”N)) = 0(2171.2“”9”]\7) =0 [— lg%N)
since the load of each subtree is equal to number of its vertices (on upper

_ L
levels), that is 207 919 N) "and it holds 2! = O(1n)-

For the subtrees on the lowest level, each path in the step 4 is replaced
by at most O(lgN) paths, so the load is at most:

1
(=L gl —HQIN) 27 [l_éVN] "

L =O0(lgN.2"7 9%) = O(lgN.——5—=—) = O(lgN.—5—=—) =
olglg™ 7 N lgo7n N

2=

N 1
=0(|—=| IlgnN
(Lg N] gaN)

Since both these loads are equal, the final load is (maximum of the
previous three loads)

L =0 [lgiN] Hzg%N) = O(N)

which is asymptoticaly optimal layout recalling the lower bound from
Theorem 5.5 .

Claim 5.13: Let BF,, be a butterfly network. Let H > 2 be an upper
bound on the hop-count. According to the previous layout and recalling the
Theorem 5.5 , we can construct an one-to-all VPL from vy for BF,, with

L=0O(N%).

Note, that the same scheme could be used for any vertex from butterfly
on the first (topmost) level, using automorphism from Appendix A - Column
symmetry. Then, applying automorphism from Appendix A - Bottom Up
symmetry, we get a VPL from any vertex in last (bottommost) level, too.

Finally, we are ready for an asymptoticaly optimal one-to-all VPL from
any vertex of the butterfly network. We begin with some definitions.

Definition 5.14: Let BF,, be a butterfly and v, € BF;,, be any vertex
from it. We define 7. . to be a complete binary tree rooted at v, . spreading
downwards in BF,, (to rows r+ 1,74+ 2,...,n) as in Definition 5.1 . Similary,
we define T;’C to be a complete binary tree rooted at v, . going upwards.

Recalling Definition 5.1 we have Ty . = T, and TT’L’C =T.
Definition 5.15: Let BF,, be a butterfly and v, . € BF,, be any vertex from
it. We define T; .[p] to be a complete binary tree rooted at v, . spreading
downwards in BF;,, with p levels. Similary we define T;’C[p] which spreads
upwards.

The following layout is quite complicated. The reader is suggested to
assume that K < H (in step 2) for the first time and ignore all parts (in
design and analysis) which concern the K = H possibility. Once the layout is
understood in this way, the K = H possibility should be taken into account.

Layout 5.16: Let BF, be a butterfly network. Let H > 2 be an upper
bound on the hop-count. Let R € BF), be any vertex of the leftmost column
in BF,, (R = vg,1 for some 1 < k < n). We construct an one-to-all VPL
from R as follows:

1. Start with empty VPL ¥

2. Construct an VPL for BF,, from vertex v,; with upper bound for
hop-count equal to H using Layout 5.12 . Add all VPs from this VPL
to the VPL W. This layout divides the butterfly into H levels (see

Fig.5.5). We define j as
J = max{v; is pivot in Layout 5.12 | j <k}

Let K be the number of levels (from Layout 5.12) below v;; in BF,.
In our example, K = 4, since there are three levels of pivots below
vj,1. It is possible to have K = H, in this case j = 1.

. Remove VPs added in step 2 which include any of the following vertices:
{Ur,c| E<r<n A 1§C§2nik}

We will not need these paths in our construction. However, this step
is optional, since leaving these paths in our VPL ¥ will not affect
asymptotical optimality.

. Construct an VPL for complete binary tree T}, ; (see Definition 5.14)
with upper bound for hop-count equal to K (from step 2) using slightly

modified Layout 4.8 . In our modification, we divide the tree T} ; into
K — 1 levels of height % + lglg%N (equal to the height of levels
in layout for BF,, from step 2) and the last Kth level with height
nd ylglgn N — (k —j) if K <H or %21 — (1 — V)lglg® N — (k — j)
if K = H. The k is taken from initial assumptions, j is from step 2.
Add these VPs to the VPL W.

. For each column 1 < ¢ < 2" % of BE,, let Vi, € Tf,1 be a vertex from
Tj,1 on column ¢ with the minimum possible row, exactly

ic = min{i|v;. € Ty 1}

Add paths (vi,c, Vic—1,c)s- - »(Vip,cr Vig—1,05 - -+ » V) to the VPL U (these
are one-hop layouts for chains (v;_c,...,vk)).

. For each such column 1 < ¢ < 27 of BF,,, that there exist connection
form vy ; to v;, . with at most K — 1 hops (in the layout for T}), find
the pivot v; y of v;_ .’s subtree in Layout 4.8 . Add path

(Viygs -+ s Vig,os Vie—T,er -+ » Uk)

to the VPL W. Construct one-hop one-to-all VPL for tree T,;’C[k — 7]
using Layout 4.5 . Add paths from this VPL to the VPL W. Moreover,
if K = H, for each column d (except of column c) of the tree T,;’C[k —7J]

find a vertex v;, 4 € T,;,c[k — j] with maximal possible row i4
ia = maz{a | vaq € T o[k — 1}
and add paths

(Vkyes v vy Vigods Vig+1,d)s - - s (Vkyes o+ - s Vig ds Vig+1,ds - - - s Un,d)

to the VPL .

7. For each such v;, ., 1 <¢ < 2"~k that we can get from vy, 1 to the v;_ .
at exactly K hops (v;, . is at the lowest level in Layout 4.8) find the
pivot v; , of v;, .’s subtree in Layout 4.8 . Now

/ .
V’l)a’b € Tk,c[k — j] add path ('Ui,ya <y Vig ey Vig—T,¢5 -+ -5 Ukyes - - - 7'Ua,b)
Moreover, if K = H,
Ve, € BF,, k <a <. add path (v;y,..., 0 ¢, Vi, 1, ---:Vac)

so in this case the chain (see step 5) is reachable directly from v ,,.
Finally, still only if K = H, for each column d (except of column c)
of the tree T, [k — j] find a vertex v;, 4 € T,;,c[k — 7] with maximal
possible row z’:i

iqg =max{a | veq € T;;,C[k — 1}

and add paths

(U’i,ya <o Viges Vig—1yer -y Vkyes - -+ 5 Vig ds 1)id+1,d)a s
R (Ui,ya <o Viges Vig—1l,er -y Ukyes -+ 5 Vig,ds Vig+1,ds - - - avn,d)
to the VPL W.

The layout is schematicaly shown in Fig.5.5.
BF H levels
n

1
2ol (- Diglg N

nol oy yglgT N
H b b

One-to-all VPL from v, ; ol | lglg® N

nol oy yglgT N
H b b

Uj,1
’
T k—3j 1
R= k,clk =l g N
Uk,1 1 hop | Yk,c 1 hop
to root | - to whole |
! subtree ! n—1 1
________ ° ° I +lglgH N
v :
Vig,c '
' 1
_________________ . Lt +lglgH N
one-to-all VPL for tree ; . L
__________________________ A - tlglgE N
'Un’] 'Un12n—lc 'Un72n—j

Fig.5.5: One-to-all VPL for BF,, from any vertex (H = 8)

Analysis of VPL:

PART A - correctnes of VPL

Let v, . be any vertex of BF,. It is included in at least one of the
following sets:

e Complete binary tree T} ;. In this case, we can get from the v, ; to
the v, . in at most K hops using layout from step 4. The VPL for
complete binary trees uses the shortest paths.

e Chain (v, ... ,1)]970). We can get from vy, 1 to v;, . in at most K hops
(step 4). If K < #H one more hop is needed from v;, . to the v, . from
step 5. Number of hops used is at most K +1 < H. If K = H find
Vj,,c'S Pivot v; in Ty, 1. We can get from vy ; to v;, in at most K — 1
hops. Since K = H, there is a single hop path from v; , to v, . (from
step 7). So H hops are needed in this case.

All these vertices are in ”subbutterfly”

{vapl k<a<n A 1§b§2”7k}
and it is easy to check, that they use shortest path from vy ; to v, ..

e One of the subtrees T,;’b[k — j]. We firstly find pivot v; , for vertex v;, 5
from step 6 or step 7 (this pivot could be also the vertex vy ; itself).
We begin with VPs from vy ; to v; . If it takes K — 1 hops (K hops to
v;, 5), then we can get from v;, to v, . through vertices v;, ; and vy
in one hop (step 7). If, on the other hand, VP from v ; to v;, takes
at most K — 2 hops, we can add two VPs, v;, to vgp and vgp to vy
from step 6. In both cases we use at most K hops. It is important
that we can get to any vertex v, ¢ < 2"~J in at most K hops. It is
still easy to see, that we use shortest paths (for detail on the shortest
paths in butterfly networks see [7]).

e Vertices in set {v,p] 1 <a<n A 2"% < b <277} not included in
previous step. We set

Iy = ma:v{a ‘ Va,c € Tllc,c mod 2"*k[k -]]}

Such index exists, since v; . € Tl;,c mod an—k [E —j]. Now, if K <H, we
construct an VP from vy to v;, . with at most K hops (see previous
step) and add one hop from v;, . to v, . from step 2 of construction
for total of K +1 < H hops. If K = H, let b = ¢ mod 2" %, so
Viyc € Ty, [k — j]. Let

iy = min{a | vap € Tha}

and let v; , be v;, ’s pivot in tree Ty ;. Then there exist a path from
vg,1 to v;, in at most K — 1 hops (step 4) and a single-hop path from
iy to vy . through vertices v;, p, v p, and v;, . from step 7.

e The rest vertices. If K = H this set is empty, so we can assume,
that K < H. These vertices are from the larger part of Fig.5.5. Let
g denote the shortest path between v, and v, s used in layout from
step 2 to connect these vertices. We set

z=min{a|1<a<2"7 A vj,€q}

The minimum operator is only for syntax, since there is exactly one
vertex in the specified set. The set is not empty, because the set
{vjall<a< 2777} is an vertex cut in BF,, so any path from Up,1
to v, s go through it. Firstly we connect vy ; with v;, with at most
K hops (see third item on this list) and from vjz t0 v . we use VPs
from step 2 (the rest of the path ¢). We can do it, since v;, is pivot
in layout from step 2. The connection of v, ; and v, . used at most
‘H hops. The connection from v, ; to v;, uses K hops, so the rest
of the path - from v;, to v, , is in at most H — K hops. Combining
with path from v ; to vj,, we can get from vg; to v, in at most
K +H — K = H hops.

PART B - shortest path analysis

Lemma 5.17: Let v, € {vap | 1 <a<kA 1<b<2" !} Then we can
get from vy 1 to v, . in at most H hops using shortest path.

Proof: For detailed description of shortest paths in butterfly topology see
Appendiz B and [7]. Let p be shortest path between vy ; and v, ., v, €
{vap |1 <a<kn 1<b< 2711, There are three possibilities

e The path p does not change direction (each row between k and r is
visited exactly once). Combine VPL from step 6 and 2 to get H— K +1
hop layout for tree T,; 1. Since v, € T,; , (because path does not
change direction), we can use this combined VPL to get from vy ; to
Urc. Since it is common VPL for tree, the used path is the shortest
one.

e The path p changes (top-down) direction once.

— The path start going up (decrease row). It can be transformed
into path ps, which changes column only before changing direction.
This can be done due to r < k. The combined VPL from step 6
and step 2 is again useful. If K < H, we get firstly from v to
v1 . using VPL for T,;’l. The rest of the path py is straight chain
on column ¢. One hop path from the layout in step 2 can be used
to get from vy . to v, .. If K = H we use only layout from step 6
and whole procedure (1),971 to vy, to vy.) can be made on single
hop.

— The path start downward (increasing row). This is identical with
downward path in the following case.

The path p changes (top-down) direction twice.

— The path start going up (decrease row). From the properties of
shortest paths (see Appendiz B), the path must finish at row & (or
below, when r > k, but this is not case of the Lemma). Such path
can be transformed into path po, which start going downwards
(the necessary column changes on rows > k are taken first). Use
po in the following case.

— The path start going down (increase row). If v, . € {vgp | j <
a<kA 1<b<2" 7} we can use connection from part A, the
last but one case (the path from that construction has the same
length as p). Otherwise, we use connection from part A, the last
case. Again, the segmets between vy 1 to v;, and v;, to v, in
the path p might be replaced by equaly long segments from this
connection (The rows are not changed, only columns are shifting
differently).

This property is exploited in Layout 5.19 to get an VPL which uses only
the shortest paths for routing.

PART C - load analysis

We will look at the load contributed from each step of construction.

Step 1. L=0.

1
Step 2. L = O([lglN] 7*lg%N) since it is the load of Layout 5.12 .

Step 3. £ = 0. We only remove paths.

1
Step 4. L = O([lglN] # lg%N) since the largest level of the tree T}, ; has
”7*1 4 lglg%N rows (see Layout 5.12).

Step 5. £ = O(lgN), it is the length of chains.

L /

Step 6. L = O([lglN]”lg%N). If K < #H, the trees T} [k — j] have

at most an + lglg%N rows, so L is as stated. If K = H, the trees

T,;,c[k — j] have at most "Tfl — lglg%N rows. To each path at most
_ Ho1

IgN new paths are added, hence £L = O(IgN - o —lglg ™ N)) as

stated (see Layout 5.12).

a1
Step 7. £ = O([;X] 7197 N). Let a =k — j and let b be the number
of rows on the lowest level in tree T} ; from the Layout 5.8 in step

4 of construction. So a +b = %1 + lglg%N if K <Hand a+b=
nl _lglg™nm N if K = H. If K < H, each path from Tj,[b] is
prolonged by at most 2% paths (vertices of T,; .la]), leading finally to

L = 0(2%2%) = 0200y = 0(2(%+l91g%N)) as stated (see Layout
5.12). If K = H, each path from Tj,[b] is prolonged by at most
2% paths to T,; .|la], which are further prolonged by another O(lgN)
paths to chain (7)id,da .«.,Upn). Independently, each path from T; ,[b] is
prolonged by O(lgN) paths to chain (v;, ¢, ..., vk,). So we have finally

_ Ho1
L = 0(29(2%UgN + IgN)) = O(291gN) = 027 1919 7 N)igN) as
stated (see Layout 5.12).

1
Each step has a load of at most O([lqiN] ”lg%N), so we have

L=0([lgiN] Hzg%N) = O(N#)

Claim 5.18: Let BF), be a butterfly network. Let > 2 be an upper bound
on the hop-count and k be arbitrary number, 1 < k£ < n — 1. According
to the previous layout and recalling the Theorem 5.5 , we can construct an
one-to-all VPL from vy for BF, with £ = O(N%).

Note, that the same scheme could be used for any vertex v, . from BF,
using automorphism which maps v, . into the vertex v, (see Appendiz A -
Column symmetry).

In the following VPL we exploit previous layout to get asymptoticaly
optimal one-to-all VPL from any vertex which uses shortest paths for routing.

Layout 5.19: Let BF,, be a butterfly network. Let H > 2 be an upper
bound on the hop-count. Let R € BF), be any vertex of the leftmost column
in BF,, (R = v, for some 1 < k < n). We construct an one-to-all VPL
from R as follows:

1. Start with empty VPL ¥

2. Construct one-to-all VPL for BF,, from vertex v ; with upper bound
for hop-count equal to ‘H using Layout 5.16 . Add all VPs from it to
VPL .

3. Construct one-to-all VPL for BF),, from vertex v,_j; with upper
bound for hop-count equal to H using Layout 5.16 . Change top-
down orientation of BF,, (use a bijection v, . — v,_y 1 4rev(c—1) Where
rev is reverse function for binary numbers, see Appendiz A - Bottom-
up symmetry). Now vy, ;1 match the vertex vj; from the previous
step. Add all VPs (after change of orientation) to the VPL .

Analysis of VPL: The load L is at most twice of the load from Layout 5.16 ,
so it still holds

X
L=

)

£=0([lgiN] lg% N) = O(N

Similary, we can still get from vy ; to any vertex in at most H hops, we
only have more alternatives.

According to Lemma 5.17 and layout from step 2, we can get to any
vertex v, . with r < k using shortest path. Similary, according to Lemma
5.17 and layout from step 3, we can get to any vertex v, . with r > k using
shortest path. So we can get to any vertex of BF}, using the shortest path.

Theorem 5.20: Let BF,, be a butterfly network. Let H > 2 be an upper
bound on the hop-count and k be arbitrary number 1 < £ < n—1. According
to the previous layout and recalling the Theorem 5.5 , we can construct an
one-to-all VPL from vy for BF, with £ = ®(N%) in which the shortest
paths are used for routing.

Note, that the same scheme could be used for any vertex v, . from BF}, by
mapping it firstly into the vertex v, ; (see Appendiz A - Column symmetry).

6 Conclusion

We presented some virtual path layouts for complete binary trees. Next we
proved a lower bound £ = Q(N%) for one-to-all VPLs on butterfly topology.
Then we presented different one-to-all VPLs for butterfly networks, leading
finally to an asymptoticaly optimal one-to-all VPL for butterfly topology
with £ = O(N#%).

Appendix A - Butterfly symmetries

In the following text, we assume that the columns of butterfly BF,, are
numered from 0 to 2"~ ! — 1, not from 1 to 2"~ ! as in previous sections.
This is because we adapt binary representation of the column index. So in
BF,,, there is an edge between two vertices iff they are in consecutive ¢-th
and (i + 1)-st levels, respectively, and their labels are either equal or differ in
the i-th most significant bit. In our v,.gy column represantion, there are edges
(Vi,e; Vig1,e) and (Vi e, Vit ¢ gor on-1-i) Where zor stands for bitwise exclusive
or.

Bottom-Up symmetry

Let BF,, be a butterfly. We define following bijection on its vertices:
F(r.c) = (n —r +1,re0(c))

where rev stand for binary reverse function. We show, that it is an
automorphism on BF,,. Let e be an edge of butterfly BF,. There are
two possibilities:

e Edge e = (vj,vit1,c). After apllying f to its vertices, we get f(e) =
(Vn—it1,rev(e)s Un—irev(c))- This is an edge in BF),, since the rows differ
only by one and the columns are the same.

e Edge e = (Vi Vit1,c gor 2n-1-1). After apllying f to its vertices, we get
fle) = (Unfi-l—l,re’u(c)avnfi,rev(c zor 2"*1*1')) = (Unfi-l—l,re'u(c)avnfi,rev(c) zor 2i-1)-
This is an edge in BF,,, since the rows differ only by one and the
columns differ on the n — i-th most significant bit.

The bijection f changes top-down orientation of BF;, (the first row becomes
last and vice versa). What is important for our layouts, all vertices on first
column (in our case column 0) remain there (rev(0) = 0).

Column symmetry

Let BF, be a butterfly. Let 0 < 2 < 2"~' — 1 be arbitrary column of BF,,.
We define following bijection on its vertices:

f(r,c) = (r,c xor x)

This is an automorphism, since the rows remain unchanged and if two
columns ¢; and co differ, they will differ in exactly the same bits after the
apllication of the function f. Notice, that the vertices in z-th column are
mapped into the vertices of the first (number 0) column of BF — n by the
bijection f.

Appendix B - Shortest paths in butterfly

Let vy, ¢;y Ury,co be two vertices in BF),. Let rp,;, be the lowest bit in which
c1 and ¢y differ, 7,4, be the highest such bit. If r; < ry, the shortest path
from v, ., to v, ., start upwards to the level ry,;,, then turns downward
toward level 7,4, and finaly turning back upwards on the r,,,,-th level to
reach vy, .,. if r1 > ro the paths starts going downwards to level 7,4,
then upwards to ry,;, and finally downwards toward v, .,. In each row we
change the correspoding bit of the column ¢; if necessary to become finaly
the column c;. However, we might pass some levels more times, so the
path is not always unique. For detailed description see [7]. In the case of
r1 = r9 we could start either up or down, the choice is ours, and then follow
the previous description. There are at most two bottom-up turns on the
shortest path and each level of BF,, is crossed at most twice, once upwards
and once downwards.

References

1]

Shmuel Zaks. Path layout in ATM Networks - A Survey. The DIMACS
Workshop on Networks in Distributed Computing, DIMACS Center,
Rutgers University, Oct. 1997.

Ornan Gerstel and Shmuel Zaks. Path Layout in
ATM Networks. International Colloquium on Structural Information
and Communication Complexity (SIROCCO), 1994.

Israel Cidon, Ornan Gerstel and Shmuel Zaks. A scalable approach to
routing in ATM networks. 8th International Workshop on Distributed
Algorithms (WDAG), Terschelling, Netherlands, October 1994, (LNCS
857) pp. 209-222.

Ladislav Stacho and Imrich Vrto. Virtual Path Layouts for some
bounded degree networks. In Proc. 3rd International Colloquium on
Structural Information and Communication Complexity (SIROCCO),
Siena, Italy, June, 1996.

Evangelos Kranakis, Danny Krizanc and Andrzej Pelc. Hop-congestion
tradeoffs for high-speed networks. 7th ITEEE Symp. on Parallel and
Distributed Processing, 1995, pp. 662-668.

Ornan Gerstel, Israel Cidon and Shmuel Zaks. The layout of virtual
paths in ATM networks. ACM/IEEE Transactions on networking,
4(6):873-884, December 1996. A preliminary version of this paper
appeared in [3].

Rastislav Kralovi¢, Peter Ruzicka and Daniel Stefankovi¢. The
Complexity of Shortest Path and Dilation Bounded Interval Routing.
Theoretical Computer Science 234(2000), 85-107.

Jean-Claude Bermond, Nausica Marlin, David Peleg and Stéphane
Perennes. Directed Virtual Path Layouts in ATM Networks. 12th
International Symposium on Distributed Computing (DISC), Andros,
Greece, September 1998, pp.75-88.

Tamar Eilam, Michele Flammini and Shmuel Zaks. A Complete
Characterization of the Path Layout Construction Problem for ATM
Networks with Given Hop Count and Load. 24th International Collog.
on Automata, Languages, and Programming, 1997.

Ornan Gerstel, Avishai Wool and Shmuel Zaks. Optimal Layouts on a
Chain ATM Network. 3rd Annual Europan Symposium on Algorithms
(ESA), Corfu, Greece, September 1995, (LNCS 979) pp. 508-522. To
appear in Discrete Appliead Mathematics (DAM).

[11] Leszek Gasieniec, Evangelos Kranakis, Danny Krizanc and Andrzej
Pelc. Minimizing Congestion of Layouts for ATM Networks with
Faulty Links. Proc. 21st International Symposium on Mathematical
Foundations of Computer Science, Lecture notes in Computer Science,
Springer Verlag, Berlin, 1996.

