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1 Introdu
tion1.1 MotivationThe rapid development in 
ommuni
ation te
hnology naturaly brings newdemands from the users. To make a realization of su
h requests possible,a new solution was to be found. The main problem still existing is the numberof distin
t 
ommuni
ation networks, su
h as ordinary telephone networks,satelite networks used primary for mobile 
ommuni
ation, 
able television,and 
omputer networks.The most promising solution to this problem seems to be the B-ISDN(Broadband Integrated Servi
es Digital Network), the su

essor of quiteunsu

essfull N-ISDN (Narrowband ISDN). N-ISDN was the �rst fully (endto end) digital telephone system. However, it 
ame too late and was o�eringtoo few for relative high pri
e. The B-ISDN o�ers solutions, where itsprede
essor failed.The main advantage of B-ISDN is the high bandwidth (from 155 Mbps),allowing, for example, realtime video transmission. The goal, however,is to rea
h gigabit rates. For su
h network, new te
hnology is needed.The standard network proto
ols, su
h as TCP/IP used in internet, wouldn'tdo the work, be
ause they are too 
omplex.The new te
hnology is 
alled ATM (Asyn
hronous Transfer Mode). Themain idea is to use small �xed size pa
kets, 
alled 
ells. This simpli�
ation,together with unreliability (no error 
he
king and 
orre
ting in higher levels)and simple routing method (straightforward two level hierar
hy), allowsdesign of very simple swit
hes operating on high speeds (dueto simpli
ity). The result is very high ratio of 
ells passing through 
hipper se
ond, implying high bandwidth.The assuptions of no error 
he
king/
orre
ting are possible only whenvery low error rate is a
hieved on physi
al transfer. Dete
ting of faulty 
ellsmust be done, ex
ept for some appli
ations, but it is left on the appli
ation.The high error rate on physi
al medium would result on frequent identi
al
ell requesting from appli
ation (all faulty 
ells must be usually resend),delaying the network and the appli
ation itself. Hopefully, the �ber opti
allows very reliable transmision together with high bandwidth.Yet, at least one problem remained. As mentioned above, the routingme
hanism is very simple. Ea
h 
ell has two small routing �elds, 
alledVCI (virtual 
hannel index) and VPI (virtual path identi�er). On everyswit
h, there are two routing tables, one for the virtual paths, the se
ondfor the virtual 
hannels. As long as VPI is not null, routing is done a

ordingto it. Then the VCI is used to 
hoose the following virtual path on the route.The virtual paths must be designed at the very beginning, and are never
hanged (they are physi
aly implemented on the swit
hing hardware). Thevirtual 
hannels are then used to 
onne
t the network users, and aremaintained dynami
ally. However, ea
h virtual 
hannel has to be buildas the 
on
atenation of the virtual paths.4



Now the problem arises - the initial design of virtual paths to allow
ommuni
ation between all interesting pairs of nodes. Moreover, severalrestri
tions 
ome into the play. These are physi
al limits of the swit
hes,and network perfoman
e requirements. We will deal with them in this paper.We start with de�nition of the model in Chapter 2. The Survey of knownresults is then presented in Chapter 3. In Chapter 4, we study some virtualpath layouts for 
omplete binary trees. These layouts are used in further
onstru
tions of VPLs for butter
y networks (Chapter 5). The main result ofthis papaer is also presented there. It is the asymptoti
aly optimal broad
astrouting s
heme (one-to-all VPL) for the butter
y topology. Finally, there
apitulation of a
hieved results appears in Chapter 6.2 The ModelNow, we present the model used to des
ribe Path Layout problems in ATMnetworks in more formal way. Most de�nitions are taken from the previouspapers (eg [1℄). The 
ommuni
ation network is represented by an undire
tedgraph G = (V;E), where the set V of verti
es 
orresponds to the ATMswit
hes, and the set E of edges to the physi
al links between them. Moreover,we have a given set � of pairs of distin
t nodes from V , between whi
h a
ommuni
ation must be established. We are interesting on two spe
ial 
ases:� The one-to-all 
ase: the 
onne
tion is required from one spe
i�edvertex to all others; so � = f(r; u)ju 2 V; u 6= rg, where r is thespe
i�ed vertex (usually 
alled the root).� The all-to-all 
ase: the 
onne
tion is required between all pairs ofverti
es; so � = f(u; v)ju; v 2 V ;u 6= vg.For the following de�nitions, the network is G, and the � is eitherone-to-all or all-to-all 
ase.De�nition 2.1: A virtual path layout (shortly VPL) 	 is a 
olle
tion ofsimple paths in G, termed virtual paths (shortly VPs).From now, we distinguish between two types of VPLs, depending ontheir 
ommuni
ation patern �. We will refer to an VPL with one-to-all
ommuni
ation pattern as one-to-all VPL, and to an VPL with all-to-all
ommuni
ation pattern as all-to-all VPL.De�nition 2.2: The load L(e) of an edge e 2 E in a VPL 	 is thenumber of VPs  2 	 that in
lude e. This notion is also refered to as itsedge 
ongestion. The load L(v) of a vertex v 2 V in a VPL 	 is the numberof VPs  2 	 that in
lude v (vertex 
ongestion).De�nition 2.3: Themaximal edge load Lmax(	) of a VPL 	 ismaxe2EL(e).The maximal vertex load of a VPL 	 is maxv2V L(v).5



Unless otherwise spe
i�ed, the loads in this paper are the edge loads.De�nition 2.4: The average (edge) load of a VPL 	 is 
omputed asLavg(	) = 1jEjXe2EL(e):De�nition 2.5: The hop 
ount H(u; v) between two verti
es u; v 2 V ina VPL 	 is the minimum number of VPs whose 
on
atenation forms a pathin G 
onne
ting u and v. This 
on
atenation is also 
alled virtual 
hannel(shortly VC). If no su
h VPs exist, we de�ne H(u; v) =1.De�nition 2.6: The maximal hop 
ount of a VPL 	 is 
omputed asHmax(	) := max(u;v)2�fH(u; v)g:The problem is to design an VPL with as small maximum hop 
ountand load as possible. However, de
reasing hop 
ount naturaly in
reases loadand vi
e versa, so some hop-load tradeo� is needed. The tradeo� is usuallystudied in one of the either way:� For a given network (G) and maximum hop 
ount (Hmax), �nd su
h aVPL on G, that has lowest possible load (Lmax) with respe
t to Hmax.� For a given network (G) and maximum load (Lmax), �nd su
h a VPLon G, that has lowest possible hop 
ount (Hmax) with respe
t to Lmax.We will 
on
entrate on the �rst 
ase. For our topology (butter
y), itwill be the more diÆ
ult one (with respe
t to asymptoti
 solutions), as wewill see later. The se
ond 
ase was already studied, and some results areknown. They are presented later.We shall also be 
on
erned with stret
h fa
tor. Informally, it is the ratiobetween the length of the path of a VC in the physi
al graph (G) and theshortest possible path between its endpoints (in G). This parameter 
ontrolthe eÆ
ien
y of the utilization of the network. However, the exa
t de�nitionis needed to prevent some 
onfusions, as explained below. The de�nition forour 
ase is as follow:De�nition 2.7: Let the Hmax be the upper bound on hop 
ount in someVPL 	. For ea
h u; v 2 �, we de�ne a setV Cu;v := f� j� is a V C between u and v with hop 
ount less or equal toHmaxgNow letdst(u; v) := min�2V Cu;vfthe length of � in physi
al graph Gg6



And �nally we get � := maxu;v2�(dst(u; v)d(u; v) )where d(u; v) is the distan
e between u and v in G. The � is 
alled stret
hfa
tor of the VPL 	 (with respe
t to Hmax).This de�nition says, that hop 
ount has a higher priority than stret
hfa
tor, as shown on the following �gure:
�
� � �
########

##########��########
###

A
B C D
onne
ting verti
es A,DHmax = 2 ; � = 52Hmax � 3 ; � = 32Suppose, we are interested only in 
onne
ting verti
es A and D. If we haveupper bound of Hmax = 2, then the only possibility is a two-hop VC
onsisting of VPs (A;C;B) and (B;A;C;D) of length 5. However, theshortest path between A and D (path (A;C;D)) has a length of 2, so � = 52 .On the other hand, if we allow greater upper bound Hmax � 3, we 
ould
onne
t A and D with three-hop VC using VPs (A;B), (B;C) and (C;D)with � = 32 .3 Survey of ResultsIn this se
tion, we summarize results related to this work, namely to thedesign of VPLs in ATM networks. Be
ause of great diversity of results,my arrangement should be 
onsidered informal. The basi
 
riterion is thetopology of the network. Besides topology several other fa
tors are 
onsidered:dire
tional/nondire
tional links, 
ommuni
ation patterns, and the type ofthe results. In general, we will 
on
entrate on the following parameters:� H, the maximum hop 
ount allowed for 
onne
tion (de�ned previouslyas Hmax)� L, the maximum load of edge allowed for VPL (de�ned previously asLmax)� �, the stret
h fa
tor, or how many times are the routing routes longerthan shortest paths. 7



3.1 Chain networksFor this subse
tion, assume N to be the length of the 
hain.� bidire
tional links, one-to-all 
ommunia
tionÆ Simple result L � H � N 1H , where H = O(1), 
omes from fairlystraightforward 
onstru
tion. It is asymptoti
aly optimal layout.See eg [3℄ and/or [6℄.Æ With more 
ompli
ated design, it is possible to get also optimalsolution. However, the proof is somewhat more diÆ
ult. Theresults are:  L+H� 1L ! < N �  L+HL !for L = O(1), and L+H+ 1H ! < N �  L+HH !for H = O(1). These two are the only truly optimal (up to
onstants, not only asymptoti
aly) results already known. See[10℄.� bidire
tional links, all-to-all 
ommuni
ationÆ For L = 2 there is a result p2N � 5 < H < p2N +2, and generallyfor L = O(1) there is 12 �N 1L < H < L�N 1L . See [5℄.Æ For any � > 0 and L � log1+�N there isH = �( logNlogL ), asymptoti
alyoptimal layout. See [4℄.Æ The reverse 
ase (given H, �nd L) is not dire
tly mentioned.� unidire
tional links, all-to-all 
ommuni
ationÆ For L = 1 it holds N2 + logN � H � N2 + logN +O(1). See [8℄.Æ Generally, for L = O(1) it holds H = 
(N 12L�1 ) andH = O(L�N 12L�1 ). See [8℄.Æ The reverse 
ase (for H, �nd L) was probably not yet studied.However, sin
e L is 
onstant in the above 
ase, the result isasymptoti
aly optimal for a given L.For all the above 
ases the routing is done along the shortest paths (�=1).
8



3.2 Ring networksNow, let N be the number of verti
es in a ring.� bidire
tional links, one-to-all 
ommuni
ationÆ Sin
e we still route using the shortest paths, we 
an treat thisproblem as the one-to-all 
ase for 
hain with length N2 . Smallte
hni
al problem arises for even N . However, it won't be aproblem at all for asymptoti
al solutions.� bidire
tional links, all-to-all 
ommuni
ationÆ For H = O(1) we 
an get132H 1H N 2H � L � H(H+ 1)2 N 2Hwhat is, for 
onstant H, an asymptoti
aly optimal layout withL = �(N 2H ). See [2℄.� unidire
tional links, all-to-all 
ommuni
ationÆ For L = 1 we have H = 2p2N +O(1). See [8℄Æ In a general 
ase L = O(1), it holds H = 
(N 12L ) andH = O(L � N 12L ), what is, for 
onstant L, again asymptoti
alyoptimal. See [8℄.3.3 Mesh networksFurther, the a; b are the dimensions of the mesh. In the 
ase of a = b, weset pN = a = b.� bidire
tional links, one-to-all 
ommuni
ationÆ For a mesh with H = O(1) we have a lower bound of L = 
((NH ) 1H )and a layout with L � H�N 1H . See [1℄.� bidire
tional links, all-to-all 
ommuni
ationÆ Quite easy 
onstru
tion (for H = O(1)) leads to a layout withL = a 2ha = b 2hb , where ha = Hlog alog b+1 , hb = H�ha. So for a = b weget L = O(H�N 2H ). See [2℄.Æ For L = O(1) and a = O(1), we have H = �(b 1aL ). Further, forthe mesh pN � pN and L = O(1), we get H = �(logpN) =�(logN). See [5℄.Æ Previous result is for arbitrary L � 2 generalized to H = �( logNlogL ).See [4℄. 9



� unidire
tional links, all-to-all 
ommuni
ationÆ For L = O(1) we have H = �(logN). See [8℄.Æ For torus and L = O(1) we getH = 
((ab) 12aL ) andH = O(a�b 12aL ).See [8℄.Æ The reverse 
ase (L for given H) is again not 
onsidered.3.4 Tree networksFor trees, let N be the number of their verti
es.� bidire
tional links, one-to-all 
ommuni
ationÆ It is shown in [10℄, that optimal one-to-all VPL for 
hain of lengthN 
an be transformed into an one-to-all VPL for a tree with Nverti
es. The � is still 1, H and L remain the same or better.This makes some upper bounds for trees in both 
ases (knownH, �nd L and vi
e versa). However, these layouts may not beoptimal for trees.Æ A re
ursive layout leads to L = O(H�N 1H ). It is also proven, thatL = 
( 1��2 1H � N 1H ), where � is the maximum degree of anyvertex in tree. For "realisti
" network (� and H bounded by
onstant) we have L = �(N 1H ). See [6℄.� bidire
tional links, all-to-all 
ommuni
ationÆ For L, an upper bound of H2(2 2H�1)N 2H and a lower bound ofL = 
( 1��(8H) 1H N 2H ) are shown in [6℄. For "realisti
" networks,it leads to L = �(N 2H ).Æ In the mentioned solutions all routes are using the shortest paths,so � = 1.� unidire
tional links, all-to-all 
ommuni
ationÆ For L = 2 we have a lower bound of H � 12N 13 and upper bounds ofH � 32N 13 and H � DG 13 logN , where DG is a diameter of thegraph. See [8℄.Æ Generally, for L = O(1), we have a lower bound of H = 
(DG 12L�1 ),upper bounds of H � 8L�N 12L�1 and H = O(DG 12L�1 � logN).See [8℄.
10



3.5 Hyper
ube topologyHere, the N denotes the dimension of the hyper
ube. So the number ofverti
es is 2N .� bidire
tional links, all-to-all 
ommuni
ationÆ For 2 � L � N we get H = �( NlogN ). See [4℄.Æ For the rest L we have H = �( NlogL). Again, see [4℄.3.6 General networksThe N will denote the number of verti
es of a graph G.� bidire
tional links, one-to-all 
ommuni
ationÆ There is a 
onstru
tion satisfying L � pHN1+ 1H . See [6℄.Æ The de
ision problem was studied for the existen
e of the one-to-all layouts for H and L in arbitrary graphs with � = 1. It wasshown, that there is a polynomial algorithm for designing su
hVPL in the 
ase of H = 2, L = 1 and H = 1, any L. In other
ases, the problem is NP-
omplete. See [9℄.� bidire
tional links, all-to-all 
ommuni
ationÆ Re
ursive 
onstru
tion for a given k leads to a VPL with � = 8kand LV = O(H � k � logN � N 1k+ 2H ), where LV is the vertexload. See [1℄.Æ It is shown in [5℄, that H > logNlog(�L) � 1, for any L � 1.Æ The VPL with H = O(DG log�logL ) was 
onstru
ted for � � 3. It isasympoti
aly optimal in the 
ase of networks with unbounded�, DG = O(logN) and any L � �. For any L � 1 andDG = O(logN) is 
onstru
ted a VPL withH = �( logNlogL ). See [4℄.Æ In [6℄ is a re
ursive 
onstru
tion for graphs with bounded treewidth.The result is L = O( kHN 2H2((1:5) 2H�1)), where k is the bound on thetreewidth.Æ Several other problems were studied, for instan
e dynami
 maintena
eof the links. The fault-tolerant VPLs were 
onsidered too (see[11℄).3.7 Summary of previous resultsThough quite a 
ouple of interesting results were already presented, thereis still a mu
h more left for future resear
h. The following list shows somepossibilities: 11



- There are still topologies not 
onsidered yet in detail (just general results
ould be applied on them). An example is a butter
y studied inChapter 4.- There are still problems, whi
h are not solved even asymptoti
aly optimal,so the gap 
ould be narrowed or 
losed. Eg tree networks for not"realisti
" 
ase.- There are results in one dire
tion (eg given L, �nd H) and not in another.This is also the 
ase for butter
y studied in this paper.- It 
ould be interesting to repla
e stret
h fa
tor by some other measuredes
ribing the di�eren
e between the shortest and used routing paths(eg dilation).- Mostly, just two 
ommuni
ation patterns are studied. The one-to-alland the all-to-all 
ase, though some other are of interest too (egpermutation pattern).- Usually, it is assumed to have 
onstant maximal L for the whole network,though the di�erent swit
hes 
ould have di�erent abilities, eg futureswit
hes may allow higher 
ongestion. Also, it is 
ommon to assumethe same 
apa
ity (bandwidth) for all the links and in both dire
tions,though di�erent servi
es demand di�erent bandwidth (and sometimesalso in di�erent dire
tions).- There are not results for any 
ompound 
ommuni
ation patterns, whi
h
ould for instan
e favour some pairs of verti
es (eg some priority linksfor important pairs or better paying 
ustomers).- The 
ase of bidire
tional links was more studied, though some unidire
tionalresults already exist.- Very few results 
onsider faulty links.- There is probably only one optimal (not only asymptoti
aly) layout, theone-to-all VPL for 
hain topology.However, on the other hand, it is ne
essary to 
onsider also the simpli
ity ofthe model. Sin
e too general model may be too 
ompli
ated for the designand analysis of VPLs. So it might be good to 
onsider, whi
h property isquite useful (eg in real ATM networks) to model, and then, perhaps, add itto the model.4 VPLs for 
omplete binary treesNow we will 
on
entrate on the design of VPLs for 
omplete binary trees.This 
ase is fairly simple and was already studied for more general 
ase(arbitrary trees, eg [3℄,[2℄). Though these results were already presented (at12



least in general 
ase), we deal with them again, sin
e they are quite usefulfor the design of VPLs on butter
y network.4.1 Complete binary treesHere we present our labeling 
onventions for 
omplete binary trees to a
hieveeasier des
ription of the design of VPLs on this topology.Let T = (V;E) be a 
omplete binary tree withN verti
es, V = fv1; :::; vNg.Then N = 2l � 1, where l is the depth of T .We number the levels of T from 010 up to 0l0 (noti
e that l = lg(N + 1)),where the root is the only vertex on the �rst level. We also label the verti
es,top-down and left-right, giving label 010 to the root. So the root is referen
edto as v1 2 V and a vertex vk 2 V , if not a leaf, has sons v2k and v2k+1, andif not a root, has a parent vbk=2
.Let e 2 E be an edge of T . We de�ne its level to be equal to the levelof the vertex in
ident with e with smaller label (so the two edges from rootare on the �rst level).Further, for any vertex u 2 V , Tu denotes the subtree of T rooted at u.4.2 Lower boundsTheorem 4.1: Let T = (V;E) be a tree network with N nodes rooted atr, let � be the maximum degree of a node, and take any h > 1. For everyone-to-all VPL from r with h hops, there exists an edge e 2 E with loadL(e) = 
( 1� 1h N 1h ).Proof: See [6℄ and/or [3℄.Theorem 4.2: Let T be a 
omplete binary tree with the root r. For everyone-to-all VPL from r it holds L = 
(N 1H ).Proof: A spe
ial 
ase of the previous theorem. Let T be a 
omplete binarytree, h = H, so � = 3. Now, from the existen
e of su
h edge e and de�nitionof Lmax, we have L = 
( 13 1H N 1H ). Sin
e 3 1H is bounded by a 
onstantbetween 1 and 3 for H � 1, we have L = 
(N 1H )2Theorem 4.3: Let T = (V;E) be a tree network with N nodes, let � bethe maximum degree of a node, and h > 1. For every all-to-all VPL with hhops, there exists an edge e 2 E with load L(e) = 
( 1� 1h N 2h ).Proof: Again, see [6℄ and/or [3℄.Theorem 4.4: Let T be a 
omplete binary tree. For every all-to-all VPLit holds L = 
(N 2H ). 13



Proof: A spe
ial 
ase of the previous theorem. Let T be a 
omplete binarytree, h = H, so � = 3. Now, from the existen
e of su
h edge e and de�nitionof Lmax, we have L = 
( 13 1H N 2H ). Sin
e 3 1H is bounded by a 
onstantbetween 1 and 3 for H � 1, we have L = 
(N 2H )24.3 1-hop VPLs for 
omplete binary treesNow, we will look 
loser at VPLs for 
omplete binary trees with Hmax = 1.Although not very interesting as a spe
ial 
ase, they are usefull as a basi
blo
k in future 
onstru
tions.Layout 4.5: Firstly, we des
ribe the most basi
 one-to-all layout 
onne
tingroot with all other verti
es. Let T = (V;E) be a 
omplete binary tree (withthe root v1). Our VPL 	 will 
onsist of the following simple paths: For ea
hvertex vk 2 V , vk 6= v1 (vk is not a root), add the shortest path from v1 tovk. This path is unique, sin
e T is a tree. We 
an write it formally as	 = f j = (vk; vbk=2
; : : : ; v1); vk 2 V ; k 6= 1gAnalysis of VPL: For the above one-to-all VPL 	, one 
an easily see, thatHmax = 1 and Lmax = bN=2
, sin
e the largest load is on the two topmostedges ((v1; v2) and (v1; v3)), ea
h sharing VPs to the whole subtree of bN=2
verti
es. Sin
e we are interested mostly on asymptoti
al results, it willusually suÆ
e, that Lmax = O(N). It is easy to see, that routing is donealong the shortest paths, so � = 1.2Layout 4.6: Although previous layout is obviously optimal (for Hmax = 1,not only asymtoti
ally), we present another assymptoti
aly optimal one-to-all layout (again from the root v1) whi
h will be exploited in further
onstru
tions. Let T = (V;E) be a 
omplete binary tree. Now we 
onne
tevery vertex vk 2 V with all the verti
es in its subtree (this was done onlywith the root v1 in the previous layout). Formally, our VPL 	 is	 = f j = (vk; vbk=2
; : : : ; vm); vk; vm 2 V ; 9j 2 N : m = b k2j 
gSimply written, vk must be in the subtree rooted at vm, but k 6= m.Analysis of VPL: In this layout, we only added some new paths to theprevious one, so the routing is still using the shortest paths and � = 1.Also Hmax = 1. To determine the Lmax is somewhat more diÆ
ult. Lete 2 E, e = (va; vb), a � b w.l.o.g., be an edge in E on ith level, 1 � i < l.Let W be a set of verti
es on the path from the root v1 to the vertex va(W = fva; vba=2
; : : : ; v1g). In the VPL 	, every path, whi
h in
ludes e,starts at some vertex from W , sin
e only verti
es from W have e in their14



subtrees. Ea
h vertex u 2 W is dire
tly 
onne
ted (by path in 	) with allverti
es 'below' e (with all verti
es in subtree rooted at vb). No other pathsuse e, sin
e ea
h path, whi
h uses e, must end in the subtree rooted at vb,and these paths were mentioned above (see Fig.4.1).��� � �
���� AA���� AAAA
����CCCC...... edge eTe

level 1 -level 2 -
level i -

v1 � root
va vbpath v1; :::; va 
ontains i verti
es�

Fig.4.1: s
hemati
 pi
ture of the tree TTe - subtree 'below' e rooted at vb
ontains 2l�i � 1 verti
es
Sin
e the edge e = (va; vb) is on the ith level, the path from v1 to va has iverti
es (va is on the ith level). These verti
es form W , so jW j = i. Thesubtree Te rooted at vb has 2l�i � 1 verti
es. Sin
e ea
h vertex from Whas dire
t 
onne
tion to every vertex in Te, the total number of paths in 	,whi
h in
lude e, is equal to jW j:jTej = i(2l�i � 1). So we haveL(e) = i(2l�i � 1) � 2i�1(2l�i � 1) = 2l�1�2i�1 � 2l�1�1 = N � 12 � b N2 
Thus, it holds Lmax = bN2 
, sin
e it is the load of the two uppermost edges((v1; v2) and (v1; v3)). Asymptoti
aly, it still holds Lmax = O(N)24.4 Asymptoti
aly optimal one-to-all VPL on 
omplete binarytreesNow we will use Layout 4.5 as a basi
 building blo
k for 
onstru
tingasymptoti
aly optimal one-to-all VPL for 
omplete binary tree rooted at v1for any given Hmax. Again, the ideas are taken from 
onstru
tions alreadypresented (eg [3℄) in more general 
ase.We need following de�nition for next layout:De�nition 4.7: Let T = (V;E) be a 
omplete binary tree with the root v1.Let u 2 V be an vertex of T . For any k 2 N , k � 1, we de�neT (u; k) = (V 0; E0)to be a subgraph of T , with verti
esV 0 = fwjw 2 Tu ^ dT (u;w) � kg15



where dT is the distan
e in the tree T . The set of edgesE0 = f(a; b)j(a; b) 2 E ^ a; b 2 V 0g
omes dire
tly from T . It is easy to see, that T (u; k) is a 
omplete binarytree with the depth of k + 1 or smaller (if k is greater than the number oflevels below the vertex u).Layout 4.8: Let T = (V;E) be a 
omplete binary tree with a root v1. Let Hbe the upper bound for hop 
ount in VPL on T . We will 
onstru
t one-to-allVPL on T from v1 as follows:Firstly assume, for simpli
ity, that l � 1 = kH, so the H divides l � 1(noti
e, that there are l� 1 levels of edges in T ). Now we partition the treeT into smaller 
omplete binary trees, ea
h with depth k+1, as follows: Forany vertex vi on level m, m = 
k + 1, 
 2 N0, if vi is not a leaf, take a treeT (vi; k) from the previous de�nition. By ST we denote arbitrary tree amongthem. There would be H levels of su
h trees, as shown in Fig.4.2:



 JJJJ���� BBBB ���� BBBB���� BBBB ���� BBBB
. . ..... . . . .

T (v1; k)ST ST
ST STFig.4.2:Tree T partitioned into the trees ST

?6?6
?6
kk
k
6
?kH = l � 1Ea
h ST is a 
omplete binarytree with depth k + 1 and2k+1 � 1 verti
es

The roots of the trees T (vi; k) are usually 
alled pivots. Noti
e, that ea
hleaf of T (vi; k) is identi
al to a root of some tree T (vj; k) from lower level(ex
ept for downmost trees). Now we 
onstru
t one-to-all VPL 	T (vi;k) forea
h of the T (vi; k) using Layout 4.5 . The VPL 	 for the tree T is thenunion of all layouts for trees T (vi; k).Analysis of VPL: Let u 2 V be a vertex of the tree T . From the previous
onstru
tion, there exists at least one (at most two) tree T (vi; k), whi
hin
ludes u. Now 
onstru
t a path P from the root v1 to the vertex vi inT (the path is unique, sin
e T is a tree). The path in
ludes at most Hpivots (the �rst is v1, last vi). Every pivot vj on P , ex
ept for vi, is dire
tly
onne
ted to the su

eeding pivot in P by single path from 	, sin
e in thetree T (vj ; k) the pivot vj is dire
tly 
onne
ted to every leaf (see Layout 4.5), and the su

eeding pivot is one of the leaves. So we 
an get from the rootv1 to the vertex vi in at most H�1 hops. From vi we 
an get to the vertex uon single hop due to layout 	T (vi;k), whi
h is in
luded in 	. So Hmax = H.16



Sin
e the path 
onstru
ted above was also the shortest path between theroot v1 and the vertex u, we get � = 1.In the 
ase of load, no two trees T (vi; k), T (vj ; k) have a 
ommon edge,so the load is the same as in every tree T (vi; k). The load is, re
alling fromLayout 4.5 , L = $2k+1 � 12 % = $2�N2 � 1H � 12 % = O(N 1H )sin
e ea
h tree T (vi; k) has 2k+1�1 verti
es and 2kH = 2l�1 = N2 . Comparingwith the lower bound, our layout is asymtoti
aly optimal.For general 
ase l � 1 = kH + m; 0 � m < H, the design is onlyslightly modi�ed. Re
all, that we have H levels of trees T (vi; k) in theprevious simpli�ed 
ase. Now, we need two di�erent types of trees, namelyT (vi; k) and T (vj ; k + 1). So we repla
e �rst m levels of trees T (vi; k) with
orresponding trees T (v0i; k+1) (with the depth equal to k+2) keeping theproperty, that the trees on neighbouring levels have only one 
ommon vertex(the pivot). The H�m downmost trees remain of depth k+1. The resultingHmax and � don't 
hange (there are stillH levels of trees T (vj ; k[+1℄) ). Theload is twi
e as large due to in
reasing the depth of some trees to k+2. This,however, don't a�e
t the assymptoti
al result.24.5 Modi�ed asymptoti
aly optimal one-to-all VPL on 
ompletebinary treesNow we will add some VPs to the previous layout, similary as we did with the1-hop 
ase. This modi�
ation does not a�e
t the asymptoti
al optimality,though it is quite useful for the butter
y network.Layout 4.9: Let T = (V;E) be a 
omplete binary tree with the root v1. LetH be the upper bound on the hop 
ount for VPL on T . We 
onstru
t one-to-all VPL 	 from v1 exa
tly as in the previous Layout 4.8 , only repla
ingLayout 4.5 for trees T (vi; k) (	T (vi;k)) by a Layout 4.6 .Analysis of VPL: Sin
e we only added new VPs to the previous layout, itis still possible to 
onne
t the root with any vertex by an VC of at most Hhops. The routing is still possible among the shortest paths (� = 1). Onlythe load of T (vi; k) is taken from di�erent layout. However, it is still thesame, sin
e the Lmax of the layouts Layout 4.5 and Layout 4.6 do notdi�er.Noti
e, that in this layout, there exist also 
onne
tions (VCs) fromarbitrary vertex u to all verti
es in its whole subtree with at most H hops.Morevoer, this is also an all-to-all layout, 
onne
ting any pair of verti
esin T with at most 2H hops using the shortest path, what makes it asymtoti
alyoptimal all-to-all layout.2 17



5 VPLs for butter
y networkThis se
tion is the heart of this paper. The design of VPLs for butter
ynetworks was not studied yet, though some results are already known as a
onsequen
e of more general theorems. We will present some new lower andupper bounds together with releated VPL designs.5.1 Butter
y topologyHere we des
ribe the butter
y topology and introdu
e our labeling 
onventionsto simplify the rest of the se
tion.The butter
y network BFn 
onsists of n2n�1 verti
es, usually representedby n rows and 2n�1 
olumns. We will label the verti
es by their row/
olumnposition, exa
tly, let v be a vertex on the rth row and in the 
th 
olumn.Then we label v as vr;
. We now de�ne the inter
onne
tion of verti
esre
ursively.BF1 network is a single vertex. Now let C,D be two BFn networks. We
onstru
t BFn+1 as follows. Add 1 to ea
h row of C and D, so they nowhave rows 2; :::; n+1. Also add 2n�1 to ea
h 
olumn of D. Now add new 2nverti
es v1;1; :::; v1;2n . Finally, add following edges to the resulting graph:� 8i; 1 � i � 2n, add an edge (v1;i; v2;i)� 8i; 1 � i � 2n�1, add an edge (v1;i; v2;i+2n�1)� 8i; 2n�1 + 1 � i � 2n, add an edge (v1;i; v2;i�2n�1)The pro
ess is s
hemati
aly shown on the following �gure:HHHHHHHHHHHHHHHHHHHHHHHH������ ������ ������������� � � �� � � �� � � �� � � �. . . . . .BFn BFnC DConstru
tion of BFn+1
[1; 1℄[2; 1℄ [1; 2n℄2n new verti
es XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX�������� �������� �������� ��������HHHHHHHH HHHHHHHH���� ���� ���� ������ �� �� ���� �� �� ��� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �BF4 network

1234
1 2 3 4 5 6 7 8

We will sometimes refer to the rows as levels, as we did on the trees.The number of rows/levels is denoted by n, or l (as in trees), and the totalnumber of verti
es as N , so N = n2n�1 = l2l�1.Now we will look at some properties of the butter
y topology, whi
h willbe helpful later. Firstly noti
e, that the butter
y is the same in the topdownand bottomup dire
tion, in the sense, that there exists an isomorphismrelabelling the verti
es and reversing their topdown orientation. Also, allthe verti
es in the same row are symmetri
 in similar way (the order within18



a row is not signi�
ant). Now we de�ne some spe
ial subtrees in
luded inthe butter
y network.De�nition 5.1: Let BFn be a butter
y. For any 1 � i � 2n�1, we de�ne atree Ti 
orresponding to the vertex v1;i as follows: We set the vertex v1;i tobe a root of the Ti. Now, for every vertex va;b already in Ti, we re
ursivelyadd its two neighbours in BFn from the level b+ 1, unless b = n, when theva;b is a leaf in Ti.Similary, we 
an de�ne the tree T 0i 
orresponding to the vertex vn;i goingbottom-up. All these trees are 
omplete binary trees with the depth n and2n � 1 = 2Nn � 1 verti
es. These trees make a ba
kbone used for some ofour VPLs. On the butter
y, we will be interested in two 
ases:� one-to-all VPLs from any vertex vr;
.� all-to-all VPLs5.2 Known resultsAs mentioned above, no spe
ial designs for butter
y were 
onstru
ted.However, several general results o�er some solutions. We will look 
loselyonly on one su
h result, whi
h a�e
ts butter
y topology in signi�
ant way.Theorem 5.2: Let G be a graph of order N with � = O(1) and diam(G) �O(logN). Then H = �( logNlogL ) for any L.Proof: See [4℄.It is easy to 
he
k, that butter
y network satis�es the 
onditions of thistheorem, so the result 
an be apllied for it. However, the 
onstru
tion from[4℄ does not use only the shortest paths. In this paper, we will study thereverse problem for butter
y topology, namely to bound L for given H.5.3 Lower boundsFirstly, we use some lower bounds from trees and apply them on the butter
ytopology.Lemma 5.3: Let 	 be an one-to-all VPL on butter
y BFn from the vertexv1;1 with the maximal load of L, the maximal hop 
ount of H and stret
hfa
tor of one (� = 1). Then there exists a one-to-all VPL 	t on 
ompletebinary tree T with n levels and 2n�1 verti
es from the root r with the samemaximal load L, the same maximal hop 
ount H and the stret
h fa
tor ofone.
19



Proof: Let T = T1 (T1 from De�nition 5.1 ), sin
e both are 
omplete binarytrees with n levels. Now we 
an 
onstru
t 	t as	t = f j 2 	 ^ 8e 2  : e 2 T1gso we will restri
t only to the VPs inside the T1. The 	t has 
learly a loadat most L, sin
e it is derived from 	, omitting some VPs.Now look at the VCs in 	t, namely, if the 
onne
tion to all the verti
esin T1 from v1;1 is still possible. Let u be an arbitrary vertex of tree T1. Thenthere exists a VC � 
onne
ting v1;1 and u (using VPs from 	). Let  2 �( is a VP in 	). We will show that  2 	t.Noti
e, that there is unique shortest path between v1;1 and u 2 T1in BFn, be
ause the path must go from v1;1 only downwards (otherwise,it wouldn't be the shortest path). But all paths from v1;1, 
oming onlydownwards, are in T1, sin
e there are allways two possibilities of going down,and both are in T1 by its de�nition. So, the shortest path between v1;1 andu in BFn is also in T1. And sin
e T1 is 
omplete binary tree, this path isunique.Now re
all, that � must go over the shortest path between v1;1 and u.This path is in T1, so is the � too. However, this imply, that  2 T1, due to 2 �. Thus, �nally we have  2 	t from the de�nition of 	t.As a result, all VPs ne
essary for 
onne
ting v1;1 and u are also in thederived VPL 	t. The routing is done using the same VC � as in 	. So thehop 
ount is at most H, and the stret
h fa
tor is equal to one.2Theorem 5.4: Let BFn be a butter
y with N verti
es. For every one-to-allVPL from v1;1 with � = 1 it holds L = 
([ NlgN ℄ 1H ).Proof: Let 	 be an one-to-all VPL for BFn with � = 1, maximal hop 
ountH and a load L. From the previous Lemma 5.3 , there exists an one-to-allVPL for 
omplete binary tree with 2n � 1 verti
es with the same H, L, and�. From the lower bound for trees (Theorem 4.2 ), we get L = 
([2n � 1℄ 1H ),what leads to: L = 
([2n � 1℄ 1H ) = 
([2n�1℄ 1H ) = 
("Nn# 1H )sin
e N = n2n�1. We have alsolg(N) = lg(n2n�1) = lg(n) + n� 1 = �(n)and next lg(N) = �(n) =) n = �(lgN)so �naly mixing these resultsL = 
("Nn# 1H ) = 
(" NlgN# 1H )20



proving the theorem.2Theorem 5.5: Let BFn be a butter
y with N verti
es. For every one-to-allVPL with upper bound on hop 
ount H � 2 it holds L = 
([ NlgN ℄ 1H lg 1HN) =
(N 1H ).Proof: Let r 2 BFn be any vertex of BFn. Let 	 be an one-to-all VPL fromr for BFn with load bounded by fun
tion L = O([ NlgN ℄ 1H f(N)). Supposethat f(N) = o(lg 1HN).Sin
e the degree of any vertex in BF is bounded by 
onstant (�max = 4),on one hop from r we 
an get to at most O([ NlgN ℄ 1H f(N)) verti
es (due tothe upper bound for L). On the se
ond hop, we 
an get from these verti
esto at most O([ NlgN ℄ 2H f2(N)) verti
es and so on. After H � 1 hops we 
anrea
h at most O([ NlgN ℄H�1H fH�1(N)) verti
es.Let S1 be a set of verti
es rea
hed from r on at most H � 1 hops inthe VPL 	. Let S2 = BFn n S1. There are at least 
(N) verti
es in S2,sin
e jS1j = O([ NlgN ℄H�1H fH�1(N)) and f(N) = o(lg 1HN). These sets are
onne
ted with at most O([ NlgN ℄H�1H fH�1(N)) edges, sin
e every vertex inS1 has at most four outgoing edges. See Fig.5.2.'
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S1 S2O([ NlgN ℄H�1H fH�1(N))verti
es 
(N)verti
esO([ NlgN ℄H�1H fH�1(N))edgesFig.5.2: Edge Cut for sets S1 and S2The verti
es in S2 must be 
onne
ted on last single hop to verti
es in S1.Sin
e there are 
(N) verti
es in S2, there must be at least 
(N) virtualpaths going through O([ NlgN ℄H�1H fH�1(N)) 
onne
ting edges. Thus we getlower bound for the load of these 
onne
tion edges equal toL = 
(N)O([ NlgN ℄H�1H fH�1(N)) = 
 N[ NlgN ℄H�1H fH�1(N)!For f(N) = lg 1HN we get L = 
(� NlgN� 1H lg 1HN). At the beginning of21



the proof we assumed, that f(N) = o(lg 1HN). So the edges on the 
uthave load at least L = !(� NlgN� 1H lg 1HN). This is a 
ontradi
tion, sin
e wesupposed, that L = O([ NlgN ℄ 1H f(N)) with f(N) = o(lg 1HN) for all edgesin VPL 	. Thus for all one-to-all VPLs for BFn with load bounded byL = O([ NlgN ℄ 1H f(N)) we must have f(N) = 
(lg 1HN) proving the theorem.2Corollary 5.6: Let BFn be a butter
y with N verti
es. For every all-to-allVPL with upper bound on hop 
ount H � 2 it holds L = 
([ NlgN ℄ 1H lg 1HN) =
(N 1H ).Proof: Sin
e every all-to-all VPL is also an one-to-all VPL from any vertex,the bound 
omes dire
tly from the previous theorem.25.4 One-to-all VPLs for butter
y networksIn this se
tion, we 
on
entrate on one-to-all VPLs for butter
y networks.Firstly, we will look at some layouts 
onne
ting the vertex v1;1 with therest of the network. Later, we generalize these results for any root vi;j . Wewill study only layouts with Hmax � 2, sin
e 
onstru
tion of 1-hop layoutsis straightforward (
onne
t v1 with every other vertex using some shortestpath, this is always asymptoti
aly optimal layout with L = O(N)).We start with an interesting layout, whi
h is both simple and quite good.Layout 5.7: Let BFn be a butter
y network. Let H � 2 be an upper boundon the hop-
ount. We 
onstru
t an one-to-all VPL from v1;1 as follows:1. Start with empty VPL 	2. Constru
t an VPL for 
omplete binary tree T1 from vertex v1;1 withupper bound for hop-
ount equal to H� 1 using Layout 4.8 . Add allVPs from the VPL for T1 to the VPL 	.3. For ea
h 
olumn 
 of BFn, let vi
;
 2 T1 be a vertex from T1 on 
olumn
 with the minimum possible row, exa
tlyi
 =minfijvi;
 2 T1gAdd paths (vi
;
; vi
�1;
),: : : ,(vi
;
; vi
�1;
; : : : ; v1;
) to the VPL 	 (theseare one-hop layouts for 
hains (vi
;
; : : : ; v1;
)).The resulting VPL is s
hemati
aly shown on the Fig.5.3.
22
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v1;1 Layout 4.8 for T1(step 2)
additional paths from step 3

Fig.5.3: Basi
 one-to-all layout for butter
yAnalysis of VPL: Firstly, we prove the 
orre
tness of this layout. We usethe following lemma:Lemma 5.8: Let BFn be a butter
y. Now take any vertex vi;
 2 BFn n T1.Then i < i
, where i
 is the same as in the previous layout.Proof: Suppose, that i � i
. From the de�nition of i
 we get vi
;
 2 T1.Now, from de�nition of T1, all neighbours of vi
;
 in level i
 + 1 are in T1.So vi
+1;
 2 T1. By indu
tion, any vertex vk;
; k � i
 is in T1. This is a
ontradi
tion, sin
e vi;
 2 BFn n T1.2Now, we show that we 
an get from v1;1 to any vertex vi;
 in at most Hhops. Let vi;
 2 BFn n fv1;1g be any vertex in BFn, ex
ept the root v1;1.There are two possible situations.Firstly assume, that vi;
 2 T1. Then, we 
an get to the vi;
 by at mostH� 1 hops using the shortest path. This follows dire
tly from Layout 4.8 ,whi
h is in
luded in VPL 	.Now, let vi;
 2 BFnnT1. We 
onne
t v1;1 with this vertex through vertexvi
;
. There is a 
onne
tion from v1;1 to vi
;
 with at most H� 1 hops usingthe shortest path, sin
e both verti
es are in T1 (see previous paragraph).Now we prolong this route by a path (vi
;
; vi
�1;
; : : : ; vi;
) (remember, thatfrom Lemma 5.8 it holds i < i
). This path is in VPL 	 due to the step 3 oflayout 
onstru
tion. The resulting 
onne
tion from v1;1 to vi;
 has at mostH� 1 + 1 = H hops. It is also easy to 
he
k, that it uses the shortest pathbetween these verti
es (the shortest paths in butter
y graphs are studiedfor example in [7℄).The last thing remaining is the load of this layout. The load of theLayout 4.8 is O(N 1H ) for a tree with N verti
es and hop-
ount at most H.In our 
ase, the tree T1 has O(Nn ) = O( NlgN ) verti
es and the upper bound23



for hop-
ount in this tree is H� 1. So the resulting load for this tree fromthe step 2 of 
onstru
tion of VPL 	 is O(� NlgN� 1H�1 ). All paths from these
ond step of 
onstru
tion use only edges of T1. On the other hand, thepaths added in step 3 have no edge in T1, so their load is independent fromthe load of T1. In ea
h 
olumn, we have at most n edges forming the 
hain.The greatest load in ea
h 
olumn 
 is on the bottom-most edge (vi
;
; vi
�1;
)and is at most n�1 (the number of paths from vi
;
). So the �nal load is themaximum of loads from steps 2 and 3, sin
e no paths from di�erent stepshave a 
ommon edge. L = max(O(" NlgN# 1H�1 );O(n))and sin
e n = �(lgN) (see Theorem 5.4 ) and lgN = O(� NlgN� 1H�1 ), we haveat last L = O(" NlgN# 1H�1 )with the hop-
ount bounded by H and � = 1 as shown above.Claim 5.9: Let BFn be a butter
y network. Let H � 2 be an upper boundon the hop-
ount. A

ording to the previous layout, we 
an 
onstru
t anone-to-all VPL from v1;1 for BFn with L = O(� NlgN� 1H�1 ).Now, we will enhan
e previous layout a bit, giving better asymptoti
result. The main idea is to 
onne
t the lower level of trees in the layout forT1 dire
tly with the 
hains from step 3, saving one hop. The hop is used toin
rease the upper bound of hop-
ount for the tree T1.Layout 5.10: Let BFn be a butter
y network. Let H � 2 be an upperbound on the hop-
ount.We 
onstru
t an one-to-all VPL from v1;1 as follows:1. Start with empty VPL 	2. Constru
t an VPL for 
omplete binary tree T1 from vertex v1;1 withupper bound for hop-
ount equal to H using Layout 4.8 . Add all VPsfrom the VPL for T1 to the VPL 	.3. For ea
h 
olumn 
 of BFn, let vi
;
 2 T1 be a vertex from T1 on 
olumn
 with the minimum possible row, exa
tlyi
 =minfijvi;
 2 T1gIf there exist 
onne
tion form v1;1 to vi
;
 with at most H� 1 hops (inthe layout for T1), add paths (vi
;
; vi
�1;
),: : : ,(vi
;
; vi
�1;
; : : : ; v1;
)24



to the VPL 	 (these are one-hop layouts for 
hains (vi
;
; : : : ; v1;
)).This is the 
ase, when vi
;
 is not in the lowest level of trees in Layout4.8 (i
 < n� k).4. For the rest verti
es vi
;
 (not in
luded in the previous step) �nd thepivot vi;j of their subtree in the Layout 4.8 . Now, for ea
h path(vi;j; : : : ; vi
;
) already in VPL 	 (in fa
t, there is only one su
h path),add paths(vi;j ; : : : ; vi
;
; vi
�1;
); : : : ; (vi;j ; : : : ; vi
;
; vi
�1;
; : : : ; v1;
)so there is one-hop 
onne
tion from the pivot vi;j to any vertex vm;
for m � i
.Analysis of VPL: Firstly, we show that we 
an get from v1;1 to any vertexvi;
 in at most H hops. The proof is similar to the one in the previous layout.There are three kinds of verti
es:� vi;
 2 T1: The fa
t follows dire
tly from the 
orre
tness of Layout 4.8and the fa
t, that it is used in VPL 	 for the tree T1.� vi;
 2 BFn n T1 and the 
orresponding vi
;
 is rea
hable from v1;1 in atmost H� 1 hops (using layout for T1): We use the VC from T1 whi
h
onne
t v1;1 and vi
;
 prolonging it with path (vi
;
; vi
�1;
; : : : ; vi;
)from step 3 of 
onstru
tion. Remeber, that from Lemma 5.8 it holdsi < i
.� vi;
 2 BFn n T1 and the 
orresponding vi
;
 is rea
hable from v1;1 inH hops (using layout for T1): We take the VC from T1 whi
h 
onne
tv1;1 and vi
;
. The last path in this VC is the path (vm;j ; : : : ; vi
;
),where vm;j is the pivot for the subtree (in Layout 4.8 for T1) whi
h
ontains the vertex vi
;
. From the step 4 of 
onstru
tion, there is apath (vm;j ; : : : ; vi
;
; vi
�1;
; : : : ; vi;
) in VPL 	. We use this path torepla
e the last path (vm;j ; : : : ; vi
;
) in VC between v1;1 and vi
;
. Theresulting VC 
onne
t v1;1 and vi;
 with at most H hops.It is easy to 
he
k, that all above 
onne
tions use the shortest paths in BFn,like in the previous layout. We will take look at the load now.The paths from step 3 have no 
ommon edge with any path from othersteps. The worst load for them, as in the previous layout, is O(lgN).Now we will look at the edges in the tree T1. For any subtree from Layout4.8 , ex
ept trees on the lowest level, there are only paths from step 2, withthe total load of O(� NlgN� 1H ). For the subtrees on the lowest level, ea
h pathis in the step 4 repla
ed by at most O(lgN) paths, so the load is at mostO(� NlgN� 1H lgN). The �nal load is the maximum of the previous three loads,so we get L = O(" NlgN# 1H lgN)25



slightly better than the previous result. Comparing with the lower bound,we have only logarithmi
 fa
tor between them.Claim 5.11: Let BFn be a butter
y network. LetH � 2 be an upper boundon the hop-
ount. A

ording to the previous layout, we 
an 
onstru
t anone-to-all VPL from v1;1 for BFn with L = O(� NlgN� 1H lgN).Now, we are ready to present an asymptoti
aly optimal layout for thebutter
y topology from the vertex v1;1. The main idea is to shrink a bitthe lowermost level of trees in the VPL design for T1, sin
e there are themost loaded edges. This will, however, in
rease somewhat height of the treesfrom upper (not lowermost) levels. The layout is identi
al to the previousone (Layout 5.10 ) ex
ept for the step 2 of 
onstru
tion.Layout 5.12: Let BFn be a butter
y network. Let H � 2 be an upperbound on the hop-
ount. We 
onstru
t an one-to-all VPL from v1;1 asfollows:1. same as in Layout 5.102. Constru
t an VPL for 
omplete binary tree T1 from vertex v1;1 withupper bound for hop-
ount equal to H using slightly modi�ed Layout4.8 . In the Layout 4.8 we divided the tree T1 into H levels oftrees with depth equal to b l�1H 
 + 1 or b l�1H 
 + 2 (l is the depthof T1). In our modi�
ation, we in
rease the depth of trees fromLayout 4.8 by a fa
tor of lglg 1HN (N is the number of verti
es inthe whole butter
y) ex
ept for the lowermost level. The lowermostlevel is de
reased by a fa
tor of (H � 1)lglg 1HN , so the number oflevels does not 
hange. Exa
tly, the topmost H�1 levels of trees havea depth of b l�1H + lglg 1HN
 + 1[+1℄ and the lowermost level of treeshave a depth of b l�1H � (H� 1)lglg 1HN
+ 1[+1℄. See Fig.5.4. Finally,add all VPs from the VPL for T1 to the VPL 	.3. same as in Layout 5.104. same as in Layout 5.10
26
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Analysis of VPL: We 
an get from v1;1 to any vertex vi;
 in at most H hops.The proof is exa
tly the same as in the Layout 5.10 . We will 
on
entrateon the load now.The paths from step 3 have are edge disjoint with any path from othersteps. The worst load for them, as in the previous layout, is O(lgN).Now we will look at the edges in the tree T1. For any subtree from themodi�ed Layout 4.8 for T1, ex
ept trees on the lowest level, there are onlypaths from step 2. Their load 
an be 
omputed as:upper levels : L = O(2( l�1H +lglg 1HN)) = O(2 l�1H :2lglg 1HN ) = O(" NlgN# 1H lg 1HN)sin
e the load of ea
h subtree is equal to number of its verti
es (on upperlevels), that is 2( l�1H +lglg 1HN), and it holds 2l = �( NlgN ).For the subtrees on the lowest level, ea
h path in the step 4 is repla
edby at most O(lgN) paths, so the load is at most:L = O(lgN:2( l�1H �lglgH�1H N)) = O(lgN: 2 lH2lglgH�1H N ) = O(lgN: � NlgN� 1HlgH�1H N ) == O(" NlgN# 1H lg 1HN)Sin
e both these loads are equal, the �nal load is (maximum of theprevious three loads)L = O(" NlgN# 1H lg 1HN) = O(N 1H )27



whi
h is asymptoti
aly optimal layout re
alling the lower bound fromTheorem 5.5 .Claim 5.13: Let BFn be a butter
y network. Let H � 2 be an upperbound on the hop-
ount. A

ording to the previous layout and re
alling theTheorem 5.5 , we 
an 
onstru
t an one-to-all VPL from v1;1 for BFn withL = �(N 1H ).Note, that the same s
heme 
ould be used for any vertex from butter
yon the �rst (topmost) level, using automorphism from Appendix A - Columnsymmetry. Then, applying automorphism from Appendix A - Bottom Upsymmetry, we get a VPL from any vertex in last (bottommost) level, too.Finally, we are ready for an asymptoti
aly optimal one-to-all VPL fromany vertex of the butter
y network. We begin with some de�nitions.De�nition 5.14: Let BFn be a butter
y and vr;
 2 BFn be any vertexfrom it. We de�ne Tr;
 to be a 
omplete binary tree rooted at vr;
 spreadingdownwards in BFn (to rows r+1,r+2,: : : ,n) as in De�nition 5.1 . Similary,we de�ne T 0r;
 to be a 
omplete binary tree rooted at vr;
 going upwards.Re
alling De�nition 5.1 we have T1;
 � T
 and T 0n;
 � T 0
 .De�nition 5.15: Let BFn be a butter
y and vr;
 2 BFn be any vertex fromit. We de�ne Tr;
[p℄ to be a 
omplete binary tree rooted at vr;
 spreadingdownwards in BFn with p levels. Similary we de�ne T 0r;
[p℄ whi
h spreadsupwards.The following layout is quite 
ompli
ated. The reader is suggested toassume that K < H (in step 2) for the �rst time and ignore all parts (indesign and analysis) whi
h 
on
ern theK = H possibility. On
e the layout isunderstood in this way, the K = H possibility should be taken into a

ount.Layout 5.16: Let BFn be a butter
y network. Let H � 2 be an upperbound on the hop-
ount. Let R 2 BFn be any vertex of the leftmost 
olumnin BFn (R � vk;1 for some 1 � k � n). We 
onstru
t an one-to-all VPLfrom R as follows:1. Start with empty VPL 	2. Constru
t an VPL for BFn from vertex vn;1 with upper bound forhop-
ount equal to H using Layout 5.12 . Add all VPs from this VPLto the VPL 	. This layout divides the butter
y into H levels (see28



Fig.5.5). We de�ne j asj = maxfvj;1 is pivot in Layout 5 :12 j j � kgLet K be the number of levels (from Layout 5.12 ) below vj;1 in BFn.In our example, K = 4, sin
e there are three levels of pivots belowvj;1. It is possible to have K = H, in this 
ase j = 1.3. Remove VPs added in step 2 whi
h in
lude any of the following verti
es:fvr;
j k � r � n ^ 1 � 
 � 2n�kgWe will not need these paths in our 
onstru
tion. However, this stepis optional, sin
e leaving these paths in our VPL 	 will not a�e
tasymptoti
al optimality.4. Constru
t an VPL for 
omplete binary tree Tk;1 (see De�nition 5.14 )with upper bound for hop-
ount equal toK (from step 2) using slightlymodi�ed Layout 4.8 . In our modi�
ation, we divide the tree Tk;1 intoK � 1 levels of height n�1H + lglg 1HN (equal to the height of levelsin layout for BFn from step 2) and the last Kth level with heightn�1H + lglg 1HN � (k � j) if K < H or n�1H � (H� 1)lglg 1HN � (k � j)if K = H. The k is taken from initial assumptions, j is from step 2.Add these VPs to the VPL 	.5. For ea
h 
olumn 1 � 
 � 2n�k of BFn, let vi
;
 2 Tk;1 be a vertex fromTk;1 on 
olumn 
 with the minimum possible row, exa
tlyi
 = minfijvi;
 2 Tk;1gAdd paths (vi
;
; vi
�1;
),: : : ,(vi
;
; vi
�1;
; : : : ; vk;
) to the VPL 	 (theseare one-hop layouts for 
hains (vi
;
; : : : ; vk;
)).6. For ea
h su
h 
olumn 1 � 
 � 2n�k of BFn, that there exist 
onne
tionform vk;1 to vi
;
 with at most K � 1 hops (in the layout for Tk;1), �ndthe pivot vi;y of vi
;
's subtree in Layout 4.8 . Add path(vi;y; : : : ; vi
;
; vi
�1;
; : : : ; vk;
)to the VPL 	. Constru
t one-hop one-to-all VPL for tree T 0k;
[k � j℄using Layout 4.5 . Add paths from this VPL to the VPL 	. Moreover,if K = H, for ea
h 
olumn d (ex
ept of 
olumn 
) of the tree T 0k;
[k�j℄�nd a vertex vid;d 2 T 0k;
[k � j℄ with maximal possible row idid = maxfa j va;d 2 T 0k;
[k � j℄gand add paths(vk;
; : : : ; vid;d; vid+1;d); : : : ; (vk;
; : : : ; vid;d; vid+1;d; : : : ; vn;d)to the VPL 	. 29



7. For ea
h su
h vi
;
, 1 � 
 � 2n�k, that we 
an get from vk;1 to the vi
;
at exa
tly K hops (vi
;
 is at the lowest level in Layout 4.8 ) �nd thepivot vi;y of vi
;
's subtree in Layout 4.8 . Now8va;b 2 T 0k;
[k � j℄ add path (vi;y; : : : ; vi
;
; vi
�1;
; : : : ; vk;
; : : : ; va;b)Moreover, if K = H,8va;
 2 BFn; k < a < i
 add path (vi;y; : : : ; vi
;
; vi
�1;
; : : : ; va;
)so in this 
ase the 
hain (see step 5) is rea
hable dire
tly from vi;y.Finally, still only if K = H, for ea
h 
olumn d (ex
ept of 
olumn 
)of the tree T 0k;
[k � j℄ �nd a vertex vid;d 2 T 0k;
[k � j℄ with maximalpossible row id id = maxfa j va;d 2 T 0k;
[k � j℄gand add paths(vi;y; : : : ; vi
;
; vi
�1;
; : : : ; vk;
; : : : ; vid;d; vid+1;d); : : :: : : ; (vi;y; : : : ; vi
;
; vi
�1;
; : : : ; vk;
; : : : ; vid;d; vid+1;d; : : : ; vn;d)to the VPL 	.The layout is s
hemati
aly shown in Fig.5.5.
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PART A - 
orre
tnes of VPLLet vr;
 be any vertex of BFn. It is in
luded in at least one of thefollowing sets:� Complete binary tree Tk;1. In this 
ase, we 
an get from the vk;1 tothe vr;
 in at most K hops using layout from step 4. The VPL for
omplete binary trees uses the shortest paths.� Chain (vi
;
; : : : ; vk;
). We 
an get from vk;1 to vi
;
 in at most K hops(step 4). If K < H one more hop is needed from vi
;
 to the vr;
 fromstep 5. Number of hops used is at most K + 1 � H. If K = H �ndvi
;
's pivot vi;y in Tk;1. We 
an get from vk;1 to vi;y in at most K � 1hops. Sin
e K = H, there is a single hop path from vi;y to vr;
 (fromstep 7). So H hops are needed in this 
ase.All these verti
es are in "subbutter
y"fva;bj k � a � n ^ 1 � b � 2n�kgand it is easy to 
he
k, that they use shortest path from vk;1 to vr;
.� One of the subtrees T 0k;b[k�j℄. We �rstly �nd pivot vi;y for vertex vib;bfrom step 6 or step 7 (this pivot 
ould be also the vertex vk;1 itself).We begin with VPs from vk;1 to vi;y. If it takes K�1 hops (K hops tovib;b), then we 
an get from vi;y to vr;
 through verti
es vib;b and vk;bin one hop (step 7). If, on the other hand, VP from vk;1 to vi;y takesat most K � 2 hops, we 
an add two VPs, vi;y to vk;b and vk;b to vr;
from step 6. In both 
ases we use at most K hops. It is importantthat we 
an get to any vertex vj;
, 
 � 2n�j in at most K hops. It isstill easy to see, that we use shortest paths (for detail on the shortestpaths in butter
y networks see [7℄).� Verti
es in set fva;bj j � a � n ^ 2n�k < b � 2n�jg not in
luded inprevious step. We setir = maxfa j va;
 2 T 0k;
 mod 2n�k [k � j℄gSu
h index exists, sin
e vj;
 2 T 0k;
 mod 2n�k [k� j℄. Now, if K < H, we
onstru
t an VP from vk;1 to vir;
 with at most K hops (see previousstep) and add one hop from vir;
 to vr;
 from step 2 of 
onstru
tionfor total of K + 1 � H hops. If K = H, let b = 
 mod 2n�k, sovir;
 2 T 0k;b[k � j℄. Let ib = minfa j va;b 2 Tk;1gand let vi;y be vib;b's pivot in tree Tk;1. Then there exist a path fromvk;1 to vi;y in at most K � 1 hops (step 4) and a single-hop path fromvi;y to vr;
 through verti
es vib;b; vk;b; and vir;
 from step 7.31



� The rest verti
es. If K = H this set is empty, so we 
an assume,that K < H. These verti
es are from the larger part of Fig.5.5. Letq denote the shortest path between vn;1 and vr;s used in layout fromstep 2 to 
onne
t these verti
es. We setx = minfa j 1 � a � 2n�j ^ vj;a 2 qgThe minimum operator is only for syntax, sin
e there is exa
tly onevertex in the spe
i�ed set. The set is not empty, be
ause the setfvj;a j 1 � a � 2n�jg is an vertex 
ut in BFn, so any path from vn;1to vr;s go through it. Firstly we 
onne
t vk;1 with vj;x with at mostK hops (see third item on this list) and from vj;x to vr;
 we use VPsfrom step 2 (the rest of the path q). We 
an do it, sin
e vj;x is pivotin layout from step 2. The 
onne
tion of vn;1 and vr;
 used at mostH hops. The 
onne
tion from vn;1 to vj;x uses K hops, so the restof the path - from vj;x to vr;s is in at most H �K hops. Combiningwith path from vk;1 to vj;x, we 
an get from vk;1 to vr;s in at mostK +H�K = H hops.PART B - shortest path analysisLemma 5.17: Let vr;
 2 fva;b j 1 � a � k ^ 1 � b � 2n�1g. Then we 
anget from vk;1 to vr;
 in at most H hops using shortest path.Proof: For detailed des
ription of shortest paths in butter
y topology seeAppendix B and [7℄. Let p be shortest path between vk;1 and vr;
, vr;
 2fva;b j 1 � a � k ^ 1 � b � 2n�1g. There are three possibilities� The path p does not 
hange dire
tion (ea
h row between k and r isvisited exa
tly on
e). Combine VPL from step 6 and 2 to get H�K+1hop layout for tree T 0k;1. Sin
e vr;
 2 T 0k;1 (be
ause path does not
hange dire
tion), we 
an use this 
ombined VPL to get from vk;1 tovr;
. Sin
e it is 
ommon VPL for tree, the used path is the shortestone.� The path p 
hanges (top-down) dire
tion on
e.{ The path start going up (de
rease row). It 
an be transformedinto path p2, whi
h 
hanges 
olumn only before 
hanging dire
tion.This 
an be done due to r � k. The 
ombined VPL from step 6and step 2 is again useful. If K < H, we get �rstly from vk;1 tov1;
 using VPL for T 0k;1. The rest of the path p2 is straight 
hainon 
olumn 
. One hop path from the layout in step 2 
an be usedto get from v1;
 to vr;
. If K = H we use only layout from step 6and whole pro
edure (vk;1 to v1;
 to vr;
) 
an be made on singlehop. 32



{ The path start downward (in
reasing row). This is identi
al withdownward path in the following 
ase.� The path p 
hanges (top-down) dire
tion twi
e.{ The path start going up (de
rease row). From the properties ofshortest paths (see Appendix B), the path must �nish at row k (orbelow, when r > k, but this is not 
ase of the Lemma). Su
h path
an be transformed into path p2, whi
h start going downwards(the ne
essary 
olumn 
hanges on rows � k are taken �rst). Usep2 in the following 
ase.{ The path start going down (in
rease row). If vr;
 2 fva;b j j �a � k ^ 1 � b � 2n�jg, we 
an use 
onne
tion from part A, thelast but one 
ase (the path from that 
onstru
tion has the samelength as p). Otherwise, we use 
onne
tion from part A, the last
ase. Again, the segmets between vk;1 to vj;x and vj;x to vr;
 inthe path p might be repla
ed by equaly long segments from this
onne
tion (The rows are not 
hanged, only 
olumns are shiftingdi�erently).This property is exploited in Layout 5.19 to get an VPL whi
h uses onlythe shortest paths for routing.PART C - load analysisWe will look at the load 
ontributed from ea
h step of 
onstru
tion.� Step 1. L = 0.� Step 2. L = O(� NlgN� 1H lg 1HN) sin
e it is the load of Layout 5.12 .� Step 3. L = 0. We only remove paths.� Step 4. L = O(� NlgN� 1H lg 1HN) sin
e the largest level of the tree Tk;1 hasn�1H + lglg 1HN rows (see Layout 5.12 ).� Step 5. L = O(lgN), it is the length of 
hains.� Step 6. L = O(� NlgN� 1H lg 1HN). If K < H, the trees T 0k;
[k � j℄ haveat most n�1H + lglg 1HN rows, so L is as stated. If K = H, the treesT 0k;
[k � j℄ have at most n�1H � lglgH�1H N rows. To ea
h path at mostlgN new paths are added, hen
e L = O(lgN � 2(n�1H �lglgH�1H N)) asstated (see Layout 5.12 ).� Step 7. L = O(� NlgN� 1H lg 1HN). Let a = k � j and let b be the numberof rows on the lowest level in tree Tk;1 from the Layout 5.8 in step33



4 of 
onstru
tion. So a + b = n�1H + lglg 1HN if K < H and a + b =n�1H � lglgH�1H N if K = H. If K < H, ea
h path from Ti;y[b℄ isprolonged by at most 2a paths (verti
es of T 0k;
[a℄), leading �nally toL = O(2a2b) = O(2a+b) = O(2(n�1H +lglg 1HN)) as stated (see Layout5.12 ). If K = H, ea
h path from Ti;y[b℄ is prolonged by at most2a paths to T 0k;
[a℄, whi
h are further prolonged by another O(lgN)paths to 
hain (vid;d; : : : ; vn;d). Independently, ea
h path from Ti;y[b℄ isprolonged by O(lgN) paths to 
hain (vi
;
; : : : ; vk;
). So we have �nallyL = O(2a(2blgN + lgN)) = O(2a+blgN) = O(2(n�1H �lglgH�1H N)lgN) asstated (see Layout 5.12 ).Ea
h step has a load of at most O(� NlgN� 1H lg 1HN), so we haveL = O(" NlgN# 1H lg 1HN) = O(N 1H )Claim 5.18: Let BFn be a butter
y network. LetH � 2 be an upper boundon the hop-
ount and k be arbitrary number, 1 � k � n � 1. A

ordingto the previous layout and re
alling the Theorem 5.5 , we 
an 
onstru
t anone-to-all VPL from vk;1 for BFn with L = �(N 1H ).Note, that the same s
heme 
ould be used for any vertex vr;
 from BFnusing automorphism whi
h maps vr;
 into the vertex vr;1 (see Appendix A -Column symmetry).In the following VPL we exploit previous layout to get asymptoti
alyoptimal one-to-all VPL from any vertex whi
h uses shortest paths for routing.Layout 5.19: Let BFn be a butter
y network. Let H � 2 be an upperbound on the hop-
ount. Let R 2 BFn be any vertex of the leftmost 
olumnin BFn (R � vk;1 for some 1 � k � n). We 
onstru
t an one-to-all VPLfrom R as follows:1. Start with empty VPL 	2. Constru
t one-to-all VPL for BFn from vertex vk;1 with upper boundfor hop-
ount equal to H using Layout 5.16 . Add all VPs from it toVPL 	.3. Constru
t one-to-all VPL for BFn from vertex vn�k;1 with upperbound for hop-
ount equal to H using Layout 5.16 . Change top-down orientation of BFn (use a bije
tion vr;
 ! vn�r;1+rev(
�1) whererev is reverse fun
tion for binary numbers, see Appendix A - Bottom-up symmetry). Now vn�k;1 mat
h the vertex vk;1 from the previousstep. Add all VPs (after 
hange of orientation) to the VPL 	.34



Analysis of VPL: The load L is at most twi
e of the load from Layout 5.16 ,so it still holds L = O(" NlgN# 1H lg 1HN) = O(N 1H )Similary, we 
an still get from vk;1 to any vertex in at most H hops, weonly have more alternatives.A

ording to Lemma 5.17 and layout from step 2, we 
an get to anyvertex vr;
 with r � k using shortest path. Similary, a

ording to Lemma5.17 and layout from step 3, we 
an get to any vertex vr;
 with r � k usingshortest path. So we 
an get to any vertex of BFn using the shortest path.Theorem 5.20: Let BFn be a butter
y network. Let H � 2 be an upperbound on the hop-
ount and k be arbitrary number 1 � k � n�1. A

ordingto the previous layout and re
alling the Theorem 5.5 , we 
an 
onstru
t anone-to-all VPL from vk;1 for BFn with L = �(N 1H ) in whi
h the shortestpaths are used for routing.Note, that the same s
heme 
ould be used for any vertex vr;
 fromBFn bymapping it �rstly into the vertex vr;1 (see Appendix A - Column symmetry).6 Con
lusionWe presented some virtual path layouts for 
omplete binary trees. Next weproved a lower bound L = 
(N 1H ) for one-to-all VPLs on butter
y topology.Then we presented di�erent one-to-all VPLs for butter
y networks, leading�nally to an asymptoti
aly optimal one-to-all VPL for butter
y topologywith L = �(N 1H ).
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Appendix A - Butter
y symmetriesIn the following text, we assume that the 
olumns of butter
y BFn arenumered from 0 to 2n�1 � 1, not from 1 to 2n�1 as in previous se
tions.This is be
ause we adapt binary representation of the 
olumn index. So inBFn, there is an edge between two verti
es i� they are in 
onse
utive i-thand (i+1)-st levels, respe
tively, and their labels are either equal or di�er inthe i-th most signi�
ant bit. In our vrow;
olumn represantion, there are edges(vi;
; vi+1;
) and (vi;
; vi+1;
 xor 2n�1�i) where xor stands for bitwise ex
lusiveor.Bottom-Up symmetryLet BFn be a butter
y. We de�ne following bije
tion on its verti
es:f(r; 
) = (n� r + 1; rev(
))where rev stand for binary reverse fun
tion. We show, that it is anautomorphism on BFn. Let e be an edge of butter
y BFn. There aretwo possibilities:� Edge e = (vi;
; vi+1;
). After apllying f to its verti
es, we get f(e) =(vn�i+1;rev(
); vn�i;rev(
)). This is an edge in BFn, sin
e the rows di�eronly by one and the 
olumns are the same.� Edge e = (vi;
; vi+1;
 xor 2n�1�i). After apllying f to its verti
es, we getf(e) = (vn�i+1;rev(
); vn�i;rev(
 xor 2n�1�i)) = (vn�i+1;rev(
); vn�i;rev(
) xor 2i�1).This is an edge in BFn, sin
e the rows di�er only by one and the
olumns di�er on the n� i-th most signi�
ant bit.The bije
tion f 
hanges top-down orientation of BFn (the �rst row be
omeslast and vi
e versa). What is important for our layouts, all verti
es on �rst
olumn (in our 
ase 
olumn 0) remain there (rev(0) = 0).Column symmetryLet BFn be a butter
y. Let 0 � x � 2n�1 � 1 be arbitrary 
olumn of BFn.We de�ne following bije
tion on its verti
es:f(r; 
) = (r; 
 xor x)This is an automorphism, sin
e the rows remain un
hanged and if two
olumns 
1 and 
2 di�er, they will di�er in exa
tly the same bits after theaplli
ation of the fun
tion f . Noti
e, that the verti
es in x-th 
olumn aremapped into the verti
es of the �rst (number 0) 
olumn of BF � n by thebije
tion f . 36



Appendix B - Shortest paths in butter
yLet vr1;
1, vr2;
2 be two verti
es in BFn. Let rmin be the lowest bit in whi
h
1 and 
2 di�er, rmax be the highest su
h bit. If r1 < r2, the shortest pathfrom vr1;
1 to vr2;
2 start upwards to the level rmin, then turns downwardtoward level rmax and �naly turning ba
k upwards on the rmax-th level torea
h vr2;
2 . if r1 > r2 the paths starts going downwards to level rmaxthen upwards to rmin and �nally downwards toward vr2;
2 . In ea
h row we
hange the 
orrespoding bit of the 
olumn 
1 if ne
essary to be
ome �nalythe 
olumn 
2. However, we might pass some levels more times, so thepath is not always unique. For detailed des
ription see [7℄. In the 
ase ofr1 = r2 we 
ould start either up or down, the 
hoi
e is ours, and then followthe previous des
ription. There are at most two bottom-up turns on theshortest path and ea
h level of BFn is 
rossed at most twi
e, on
e upwardsand on
e downwards.
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