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Abstract

The problem to design virtual path layouts in ATM networks has
been intensively studied with respect to the size N , load L and hop
count H. The previous result due to Stacho and Vrťo [5] presents
all-to-all virtual path layouts for some bounded degree networks in
the form H = Θ( log N

log L
) for any L. This general result holds for not

necessarily shortest paths gossip on networks of O(log N) bounded
diameter and so it can be directly applied also to butterfly topolo-
gies. However, the lower bound holds even for one-to-all virtual path
layouts thus the result is tight even in this case.

In this paper, we give an optimal shortest path broadcast lay-
out on butterfly ATM networks with load L = Θ(N1/H) for any
hop count H. That is, for specific butterfly networks it holds H =

log N
log L−O(1)

even for shortest path layouts. The question remains whether

such improved result holds also for other topologies of O(1) bounded
degree and O(log N) bounded diameter.
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1 Introduction

Recent development in fiber optic media offers dramatical changes in the
area of digital communication networks. The sharp distinction between
computer networks, telephone networks and cable TV networks has been
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replaced by a unified approach. The new technology is called ATM (Asyn-
chronous Transfer Mode). It allows very reliable transmission together with
high bandwith.

In the routing problem for ATM networks, for certain pairs of nodes the
end-to-end communication is done along predefined paths in the network,
so called virtual paths. The problem is to design these paths optimally. The
smallest number of concatenated paths between two nodes is called the hop
count, while the load of a layout is the maximum number of virtual paths
along any communication link. The hop count relates to the time needed
to establish a connection between two nodes and the load measures the size
of routing tables at nodes.

The problem to design virtual path layouts in ATM networks has been
intensively studied with respect to the network size N , load L and hop
count H (for results see representative overview [1]). The general result
due to Stacho and Vrťo [5] presents all-to-all virtual path layouts for some
bounded degree networks in the form H = Θ( log N

log L ) for any L. This re-

sult holds for not necessarily shortest path gossip on networks of O(logN)
bounded diameter and so it can be directly applied also to butterfly net-
works. However, the lower bound holds even for one-to-all virtual path
layouts, that means this result is optimal even for broadcast.

The interesting question is what happens in the reverse case, namely,
“given a hop number minimize the load”. The paper suggests that from the
theoretical point of view, it is more reasonable (and harder) to study this
problem. A good solution to this problem may provide an efficient solution
to the converse one, but not vice versa.

In this paper, we present optimal shortest path broadcast layouts on
butterfly networks in the form L = Θ(N1/H) for any H. That means,
for specific butterfly networks it holds H = log N

logL−O(1) for any L even for

shortest path layouts. The construction can be applied also to some related
networks, as wrapped butterflies or cube connected cycles, within the same
bound, however by loosing the shortest path property.

There are some questions left open. The main open problem remains
whether this reverse result holds also for other topologies of constant degree
and O(logN) bounded diameter. Further, we have restricted just to one-to-
all layouts, so the all-to-all case is another possible extension of our results.
Here the unresolved problem is whether the all-to-all case have the same
asymptotic solution as the one-to-all case, like in the result due to Stacho
and Vrťo. Finally, a reason of difficulty to analyze the reverse problem is
probably because of a strong requirement that any virtual channel to be
obtained by concatenating (appropriate) virtual paths should be shortest.
The question is what is the impact of the requirement “to be shortest” (or
stretch factor to be equal 1) on the generalization to other (larger) class of
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graphs.
The paper has the following structure. In Section 2 we present the

graph-theoretic model of ATM networks and define basic efficiency mea-
sures. Section 3 includes two basic virtual path layouts for complete binary
trees, which are used as building blocks for butterfly layouts. Section 4
contains optimal one-to-all virtual shortest path layouts on butterfly ATM
networks.

2 The Model

We exploit the graph-theoretic model of ATM networks as defined in [1].
The communication network is presented by an undirected graph G =
(V,E), where the set of vertices V corresponds to ATM switches, and the
set of edges E to physical links between them. Moreover, we have a given
set ζ of pairs of distinct vertices from V , between which a communication
must be set up. We are interested in two special communication patterns:

• one-to-all : the connection is from one specified vertex to all others;
i.e. ζ = {(r, u)|u ∈ V, u 6= r}, where r is the specified vertex (usually
called the source).

• all-to-all : the connection is between all pairs of vertices; i.e. ζ =
{(u, v)|u, v ∈ V, u 6= v}.

In the following text, the network is denoted by G, and the ζ is either
one-to-all or all-to-all pattern.

Definition 1 A virtual path layout (shortly VPL) Ψ on G is a collection
of simple paths in G, called virtual paths (shortly VPs).

From now on, we distinguish between two types of VPLs, depending on
their communication pattern ζ, namely one-to-all or all-to-all VPL.

Definition 2 The load L(e) of an edge e ∈ E in a VPL Ψ is the number
of VPs ψ ∈ Ψ that include e.

L(e) is also referred as edge congestion of e.

Definition 3 The maximal edge load Lmax(Ψ) of a VPL Ψ is maxe∈EL(e).

Definition 4 The average (edge) load of a VPL Ψ is computed as

Lavg(Ψ) =
1

|E|

∑

e∈E

L(e).
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Definition 5 The hop count H(u, v) between two vertices u, v ∈ V in a
VPL Ψ is the minimum number of VPs whose concatenation forms a path
in G connecting u and v. This concatenation is also called virtual channel
(shortly VC). If no such VPs exist, we define H(u, v) = ∞.

Definition 6 The maximal hop count of a VPL Ψ is computed as

Hmax(Ψ) := max(u,v)∈ζ{H(u, v)}.

The problem is to design a VPL such that hop count and load are min-
imized simultaneously. The hop–load tradeoff has been studied for various
topologies.

The last parameter we are interested in is stretch factor. Informally, it
is the ratio between the length of the path of a VC in the physical graph G
and the shortest possible path between its endpoints (in G). This parameter
control the efficiency of the utilization of the network. Layouts with strech
factor equal to one always use the shortest paths for routing.

3 VPLs for complete binary trees

Now we present some basic layouts for complete binary trees, known from
literature. The presented layouts are useful for the design of VPLs on but-
terfly networks.

Layout 1

Let T = (V,E) be a complete binary tree with a root v1. Our VPL Ψ will
consist of the following simple paths: for each vertex vk ∈ V , vk 6= v1, add
the shortest path from v1 to vk, i.e. Ψ = {ψ | ψ = (vk, v⌊k/2⌋, . . . , v1), vk ∈
V, k 6= 1}.

Analysis of VPL. It is easy to see that Hmax = 1, Lmax = ⌊N/2⌋,
φ = 1, where N is the number of vertices in T . 2

For the next layout we need the following definition:

Definition 7 Let T = (V,E) be a rooted complete binary tree and u ∈ V
be a vertex of T . Let Tu denote a subtree of T rooted at u. For any k ∈ N ,
k ≥ 1, we define T (u, k) = (V ′, E′) as a subgraph of T , with vertices
V ′ = {w|w ∈ Tu ∧ dT (u,w) ≤ k}, where dT is the distance in the tree T ,
and edges E′ = {(a, b)|(a, b) ∈ E ∧ a, b ∈ V ′}.

It is easy to see that T (u, k) is a complete binary tree with depth at
most k + 1 (if k is greater than the number of levels below the vertex u).
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Layout 2

Let T = (V,E) be a complete binary tree with a root v1. Let H be an
upper bound for hop count in VPL on T . We construct an one-to-all VPL
with hop count H on T from v1 as follows:

First assume, for simplicity, that l− 1 = kH, so H divides l− 1 (notice,
that there are l − 1 levels of edges in T ). Now partition the tree T into
smaller complete binary trees, each with depth k + 1, as follows: For any
vertex vi on level m, m = ck + 1, c ∈ N0, if vi is not a leaf, take a tree
T (vi, k) from the previous definition. By ST denote arbitrary tree among
them. There are H levels of such trees, as shown in F ig. 1.
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Figure 1: Tree T partitioned into trees ST

The roots of the trees T (vi, k) are usually called pivots. Note that each
leaf of T (vi, k) is identical to a root of some tree T (vj, k) from lower level
(except for downmost trees). Now for each T (vi, k) construct a one-to-all
VPL ΨT (vi,k) using Layout 1. The VPL Ψ for the tree T is the union of all
layouts for trees T (vi, k).

For general case l− 1 = kH + p, 0 < p < H, the design is only slightly
modified s.t. subtrees in p levels have the height k + 1 instead of k. This
does not influence the asymptoticity of the result.

Analysis of VPL. Hmax = H, L = O(N
1
H ), φ = 1. 2
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4 VPLs for butterfly network

The design of VPLs for butterfly networks has not yet been studied. How-
ever, some results can be obtained as a consequence of known general the-
orems. We will present some new lower and upper bounds together with
related VPL designs.

4.1 Butterfly topology

First, we describe the butterfly topology and introduce our labeling con-
ventions to simplify the rest of the section.

The butterfly network BFn consists of n2n−1 vertices, usually repre-
sented by n rows and 2n−1 columns. Let v be a vertex in the rth row and
in the cth column. Then we label v as vr,c. We now define the interconnec-
tion of vertices recursively.

BF1 network is a single vertex. Let C, D be two BFn networks. Con-
struct BFn+1 as follows. Add 1 to each row of C and D, so they now
have rows 2, ..., n + 1. Also add 2n−1 to each column of D. Now add 2n

new vertices v1,1, ..., v1,2n . Finally, add the following edges to the resulting
graph:

• ∀i, 1 ≤ i ≤ 2n, add an edge (v1,i, v2,i)

• ∀i, 1 ≤ i ≤ 2n−1, add an edge (v1,i, v2,i+2n−1)

• ∀i, 2n−1 + 1 ≤ i ≤ 2n, add an edge (v1,i, v2,i−2n−1)

The process is schematically shown on the Figure 2.
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Figure 2: Butterfly topology
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We will sometimes refer to the rows as levels. The number of rows
(levels) is denoted by n, and the total number of vertices as N , so N =
n2n−1.

Definition 8 Let BFn be a butterfly. For any 1 ≤ i ≤ 2n−1, define a tree
Ti corresponding to the vertex v1,i as follows: Set the vertex v1,i to be the
root of the Ti; for every vertex va,b already in Ti, recursively add its two
neighbours in BFn from the level b + 1, unless b = n, where va,b is a leaf
in Ti.

Similary, we can define the tree T
′

i corresponding to the vertex vn,i

oriented bottom-up. All these trees are complete binary trees with depth
n and 2n − 1 = 2N

n − 1 vertices. These trees make a backbone used for our
VPLs.

4.2 Known results

Some known results for common interconnection networks follow from the
following theorem (see [5])

Theorem 1 Let G be a graph of order N with the maximal vertex degree
O(1) and the diameter O(logN). Then for not necessarily shortest path
gossip on G it holds H = Θ( logN

logL ) for any given L.

The lower bound part of the above result holds even for one-to-all lay-
outs, so it is tight also for broadcast virtual path layouts. However, this
result can be directly applied to butterfly networks. In this paper, how-
ever, we will study the reverse problem for butterfly topology, namely to
determine load L for a given hop count H. Moreover, it will turn out, that
this reverse relation for one-to-all layouts (i.e. to compute L for given H)
is more difficult to prove, since it will imply the above result and not vice
versa.

4.3 Lower bound

In this subsection we present a lower bound on the load for butterfly topolo-
gies.

Theorem 2 Let BFn be a butterfly with N vertices. For every one-to-all
VPL with given hop count H it holds L = Ω(N

1
H ).

Proof. For H = 1 the lower bound L = 1
4 (N − 1) is trivial. So assume

H ≥ 2.
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Let r be a source in BFn. Assume Ψ to be an one-to-all layout from r (on

BFn) with load bounded by L = O([ N
lgN ]

1
H f(N)), where f(N) = o(lg

1
HN).

Since BFn is of constant vertex degree (∆max = 4), on the first hop

from r one can get to at most O([ N
lgN ]

1
H f(N)) vertices. On the second hop,

from these vertices one can get to at most O([ N
lgN ]

2
H f2(N)) vertices and so

on. Hence, after H − 1 hops one can reach at most O([ N
lgN ]

H−1
H fH−1(N))

vertices.
Let S1 be a set of vertices reached from r by at most H − 1 hops in

the VPL Ψ. Let S2 = BFn \ S1. There are at least Ω(N) vertices in S2,

since |S1| = O([ N
lgN ]

H−1
H fH−1(N)) and f(N) = o(lg

1
HN). These sets are

connected with at most O([ N
lgN ]

H−1
H fH−1(N)) edges, since every vertex in

S1 has at most four outgoing edges. See Fig. 3.

'
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H fH−1(N))

vertices
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]
H−1
H fH−1(N))
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Figure 3: Edge Cut for sets S1 and S2

The vertices in S2 must be connected to vertices in S1 on the last single
hop. Since there are Ω(N) vertices in S2, there must be at least Ω(N) virtual

paths going through O([ N
lgN ]

H−1
H fH−1(N)) edges connecting S1 with S2.

Thus we get lower bound on the load of these connection edges equal to

L =
Ω(N)

O([ N
lgN ]

H−1
H fH−1(N))

= Ω

(

N

[ N
lgN ]

H−1
H fH−1(N)

)

.
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As f(N) = o(lg
1
HN), the edges on the cut have load at least L =

ω(
[

N
lgN

]
1
H lg

1
HN). This is a contradiction, since we supposed that L =

O([ N
lgN ]

1
H f(N)) with f(N) = o(lg

1
HN) for all edges in the layout Ψ.

Thus for arbitrary one-to-all VPL for BFn with load bounded by L =
O([ N

lgN ]
1
H f(N)) it holds f(N) = Ω(lg

1
HN), proving the theorem. 2

Note that we are not aware of better lower bound for all-to-all case.

4.4 One-to-all VPLs for butterfly networks

In this section we design one-to-all VPLs for butterfly networks. Firstly,
we look at one-to-all layouts from the “corner” vertex v1,1. Later on, we
generalize these results for any source vi,j .

We start with an asymptoticaly optimal one-to-all layout from the ver-
tex v1,1 on the butterfly.

Layout 3

Let BFn be a butterfly network. Let H ≥ 2 be an upper bound on the hop
count. We construct an one-to-all VPL from v1,1 as follows:

1. Start with empty VPL Ψ.

2. Construct a VPL for complete binary tree T1 from the vertex v1,1

with upper bound for hop count equal to H using slightly modified
Layout 2. In the Layout 2 we divided the tree T1 into H levels of
trees with depth equal to ⌊ l−1

H ⌋+ 1 or to ⌊ l−1
H ⌋+ 2 (l is the depth of

T1). In our modification, we increase the depth of trees from Layout

2 by lglg
1
HN (N is the number of vertices in the whole butterfly)

except for the lowermost level. In the lowermost level the depth of
trees is decreased by (H − 1)lglg

1
HN , so the number of levels does

not change. More precisely, the upper H− 1 levels of trees have the
depth ⌊ l−1

H + lglg
1
HN⌋+ 1[+1] and the lowermost level of trees have

the depth ⌊ l−1
H − (H− 1)lglg

1
HN⌋ + 1[+1]. See Fig. 4. Finally, add

all VPs from the VPL for T1 to Ψ.

3. For each column c of BFn, by vic,c denote a vertex from T1 on the
column c with the minimum possible row, i.e. ic = min{i|vi,c ∈ T1}.
If there exist connections from v1,1 to vic,c with at most H−1 hops (in
the layout for T1 from step 2), add paths (vic,c, vic−1,c),. . . ,(vic,c, vic−1,c, . . . , v1,c)
to Ψ (these are one-hop layouts for chains (vic,c, . . . , v1,c)). This is
the case, where vic,c is not in the lowest level of trees in Layout 2
(ic < n− k).
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4. For the rest of vertices vic,c (not included in the previous step 3) find
the pivot vi,j of their subtree in the Layout 2. Now, for each path
(vi,j , . . . , vic,c) already included in Ψ (in fact, there is only one such
path), add paths (vi,j , . . . , vic,c, vic−1,c), . . . , (vi,j , . . . , vic,c, vic−1,c, . . . , v1,c)
to Ψ, so there is one-hop connection from the pivot vi,j to any vertex
vm,c for m ≤ ic.
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Figure 4: Tree T1 partitioned into the levels of trees

Analysis of VPL. We need the following lemma:

Lemma 1 Let BFn be a butterfly. Now take any vertex vi,c ∈ BFn \ T1.
Then i < ic, where ic is the same as defined in the previous layout.

Proof. Suppose that i ≥ ic. From the definition of ic we get vic,c ∈ T1.
Now, from the definition of T1, all neighbours of vic,c in level ic + 1 are in
T1. So vic+1,c ∈ T1. By induction, any vertex vk,c, k ≥ ic, is in T1. This is
a contradiction since vi,c ∈ BFn \ T1. 2

Now, we show that H hops are sufficient to get from v1,1 to any vertex
vi,c. Consider three cases:

• vi,c ∈ T1: The fact follows directly from the correctness of Layout 2
and from the fact that it is used in VPL Ψ for the tree T1.

• vi,c ∈ BFn \ T1 and the corresponding vic,c is reachable from v1,1

in at most H − 1 hops (using layout for T1): We use the VC
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from T1 which connects v1,1 and vic,c prolonging it with the path
(vic,c, vic−1,c, . . . , vi,c) from step 3 of construction. Following Lemma
1 it holds i < ic.

• vi,c ∈ BFn\T1 and the corresponding vic,c is reachable from v1,1 in H
hops (using layout for T1): We take the VC from T1 which connects
v1,1 and vic,c. The last path in this VC is the path (vm,j , . . . , vic,c),
where vm,j is the pivot for the subtree (in Layout 2 for T1) which
contains the vertex vic,c. From the step 4 of construction, there is
a path (vm,j , . . . , vic,c, vic−1,c, . . . , vi,c) in VPL Ψ. We use this path
to replace the previous path (vm,j , . . . , vic,c) in VC between v1,1 and
vic,c. The resulting VC connects v1,1 and vi,c with at most H hops.

It is easy to check that all above connections are shortest paths in BFn.
Now we will concentrate on the parameter load.

Paths from step 3 are edge disjoint with any path from other steps.
Their worst-case load is O(lgN).

Now look at the edges in the tree T1. For any subtree from the modified
Layout 2 for T1, except trees on the lowest level, there are only paths from
step 2. Their load can be computed as follows:

upper levels : L = O(2( l−1
H

+lglg
1
H N)) = O(2

l−1
H .2lglg

1
H N ) = O(

[

N

lgN

]
1
H

lg
1
HN)

since the load of each subtree is equal to the number of its vertices (on

upper levels), that is 2( l−1
H

+lglg
1
H N), and it holds 2l = Θ( N

lgN ).
For subtrees on the lowest level, each path in step 4 is replaced by at

most O(lgN) paths, so the load is at most:

L = O(lgN.2( l−1
H

−lglg
H−1
H N)) = O(lgN.

2
l
H

2lglg
H−1
H N

) = O(lgN.

[

N
lgN

]
1
H

lg
H−1
H N

) =

= O(

[

N

lgN

]
1
H

lg
1
HN).

Since both these loads are equal, the final load is (the maximum of
previous three loads)

L = O(

[

N

lgN

]
1
H

lg
1
HN) = O(N

1
H ),

which is asymptoticaly optimal layout recalling the lower bound from
Theorem 2. 2
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Claim 1 Let BFn be a butterfly network. Let H ≥ 2 be an upper bound
on the hop count. Due to the previous layout and the Theorem 2, we can
construct an one-to-all VPL from v1,1 for BFn with L = Θ(N

1
H ).

Note that the same scheme can be used to broadcast from any vertex
of butterfly lying on the first (topmost) level and from any vertex on the
last (bottommost) level.

Now, we are ready to present an asymptoticaly optimal one-to-all VPL
from any vertex of the butterfly network. We start with some definitions.

Definition 9 Let BFn be a butterfly and vr,c be any vertex from BFn.
Define Tr,c to be a complete binary tree rooted at vr,c spreading downwards

in BFn (to rows r+ 1,r+ 2,. . . ,n) as in Definition 8. Similary, define T
′

r,c

to be a complete binary tree rooted at vr,c going upwards.

Recalling Definition 8 we have T1,c ≡ Tc and T
′

n,c ≡ T
′

c .

Definition 10 Let BFn be a butterfly and vr,c be any vertex from BFn.
Define Tr,c[p] to be a complete binary tree rooted at vr,c spreading down to

p levels in BFn. Similary define T
′

r,c[p] which spreads upwards.

The following layout is rather complicated. The reader is suggested to
assume that K < H (in step 2) for the first time and ignore all parts (in
the design and analysis) which concern the K = H possibility. Once the
layout is understood in this way, the K = H possibility should be taken
into account.

Layout 4

Let BFn be a butterfly network. Let H ≥ 2 be an upper bound on the hop
count. Let R ∈ BFn be any vertex of the leftmost column in BFn (R ≡ vk,1

for some 1 ≤ k ≤ n). We construct an one-to-all VPL from R as follows:

1. Start with empty VPL Ψ.

2. Construct a one-to-all VPL for BFn from the vertex vn,1 with upper
bound for hop count H using Layout 3. Add all VPs from this VPL
to Ψ. This layout divides the butterfly into H levels (see Fig. 5 ). We
define j as j = max{vj,1 is pivot in Layout 3| j ≤ k}. Let K be the
number of levels (from Layout 3) below vj,1 in BFn.

{In our example (Fig. 5 ), K = 4, since there are three levels of pivots
below vj,1. It is possible to have K = H, in this case j = 1.}
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3. Remove VPs added in step 2 which include vertices from {vr,c| k ≤
r ≤ n ∧ 1 ≤ c ≤ 2n−k}.

{These paths are not needed in our construction. However, this step
is optional, since leaving these paths in our VPL Ψ will not affect
asymptotical optimality.}

4. Construct a VPL for a complete binary tree Tk,1 (see Definition 9)
with hop count K (from step 2) using slightly modified Layout 2. In
our modification, we divide the tree Tk,1 into K − 1 levels of height
n−1
H + lglg

1
HN (equal to the height of levels in layout for BFn from

step 2) and the last Kth level with height n−1
H + lglg

1
HN − (k − j)

if K < H or with height n−1
H − (H− 1)lglg

1
HN − (k − j) if K = H.

The k is taken from initial assumptions, j is from step 2. Add these
VPs to Ψ.

5. For each column 1 ≤ c ≤ 2n−k of BFn, let vic,c be a vertex from Tk,1

on column c with the minimum possible row, i.e. ic = min{i|vi,c ∈
Tk,1}. Add paths (vic,c, vic−1,c),. . . ,(vic,c, vic−1,c, . . . , vk,c) to Ψ (these
are one-hop layouts for chains (vic,c, . . . , vk,c)).

6. For each column 1 ≤ c ≤ 2n−k of BFn such that there exist con-
nection from vk,1 to vic,c with at most K − 1 hops (in the lay-
out for Tk,1), find the pivot vi,y of vic,c’s subtree in Layout 2. Add
path (vi,y , . . . , vic,c, vic−1,c, . . . , vk,c) to Ψ. Construct one-hop one-to-

all VPL for tree T
′

k,c[k− j] using Layout 1. Add paths from this VPL
to Ψ. Moreover, if K = H, for each column d (except of column c)
of the tree T

′

k,c[k − j] find a vertex vid,d ∈ T
′

k,c[k − j] with maximal

possible row id, i.e. id = max{a | va,d ∈ T
′

k,c[k − j]} and add paths

(vk,c, . . . , vid,d, vid+1,d), . . . , (vk,c, . . . , vid,d, vid+1,d, . . . , vn,d)

to Ψ.

7. For each vic,c, 1 ≤ c ≤ 2n−k such that we can get from vk,1 to the
vic,c by exactly K hops (vic,c is at the lowest level in Layout 2) find
the pivot vi,y of vic,c’s subtree in Layout 2. Now

∀va,b ∈ T
′

k,c[k − j] add path (vi,y , . . . , vic,c, vic−1,c, . . . , vk,c, . . . , va,b)

to Ψ. Moreover, if K = H,

∀va,c ∈ BFn, k < a < ic add path (vi,y, . . . , vic,c, vic−1,c, . . . , va,c)

to Ψ, so in this case the chain (see step 5) is reachable directly from
vi,y . Finally, still only if K = H, for each column d (except of column
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c) of the tree T
′

k,c[k− j] find a vertex vid,d ∈ T
′

k,c[k− j] with maximal
possible row id, i.e.

id = max{a | va,d ∈ T
′

k,c[k − j]}

and add paths

(vi,y , . . . , vic,c, vic−1,c, . . . , vk,c, . . . , vid,d, vid+1,d), . . .

. . . , (vi,y, . . . , vic,c, vic−1,c, . . . , vk,c, . . . , vid,d, vid+1,d, . . . , vn,d)

to Ψ.

The layout is schematicaly shown in F ig. 5.
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H
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1
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1
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n−1
H

+ lglg
1
H N

n−1
H

− (H − 1)lglg
1
H N

One-to-all VPL from vn,1

one-to-all VPL for tree

Figure 5: One-to-all VPL for BFn from any vertex (H = 8)

Analysis of VPL.

PART A - correctness of VPL

Let vr,c be any vertex of BFn. It is included in at least one of the
following sets:

• Complete binary tree Tk,1: In this case, we can get from the vk,1 to
the vr,c in at most K hops using layout from step 4. The VPL for
complete binary trees uses the shortest paths.
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• Chain (vic,c, . . . , vk,c): We can get from vk,1 to vic,c in at most K
hops (step 4). If K < H one more hop is needed from vic,c to the
vr,c from step 5. The number of hops used is at most K + 1 ≤ H. If
K = H find vic,c’s pivot vi,y in Tk,1. We can get from vk,1 to vi,y in
at most K − 1 hops. Since K = H, there is a single hop path from
vi,y to vr,c (from step 7). So H hops are needed in this case.
All these vertices are in “subbutterfly”

{va,b| k ≤ a ≤ n ∧ 1 ≤ b ≤ 2n−k}

and it is easy to verify, that they use shortest path from vk,1 to vr,c.

• One of the subtrees T
′

k,b[k − j]: We firstly find pivot vi,y for vertex
vib,b from step 6 or step 7 (this pivot could be also the vertex vk,1

itself). We begin with VPs from vk,1 to vi,y. If it takes K−1 hops (K
hops to vib,b), then we can get from vi,y to vr,c through vertices vib,b

and vk,b in one hop (step 7). If, on the other hand, VP from vk,1 to
vi,y takes at most K − 2 hops, we can add two VPs, vi,y to vk,b and
vk,b to vr,c from step 6. In both cases we use at most K hops. It is
important that we can get to any vertex vj,c, c ≤ 2n−j in at most K
hops. It is still easy to see, that we use shortest paths (for complete
characterization of the shortest paths in butterfly networks see e.g.
[8]).

• Vertices in {va,b| j ≤ a ≤ n ∧ 2n−k < b ≤ 2n−j}, not included in

the previous step: We set ir = max{a | va,c ∈ T
′

k,c mod 2n−k [k − j]}.

Such index exists, since vj,c ∈ T
′

k,c mod 2n−k [k−j]. Now, if K < H, we

construct an VP from vk,1 to vir ,c with at most K hops (see previous
step) and add one hop from vir ,c to vr,c from step 2 of construction
for total of K + 1 ≤ H hops. If K = H, let b = c mod 2n−k, so
vir ,c ∈ T

′

k,b[k− j]. Let ib = min{a | va,b ∈ Tk,1} and let vi,y be vib,b’s
pivot in tree Tk,1. Then there exist a path from vk,1 to vi,y in at most
K − 1 hops (step 4) and a single-hop path from vi,y to vr,c through
vertices vib,b, vk,b, and vir ,c from step 7.

• The rest of vertices: IfK = H this set is empty, so we can assume, that
K < H. These vertices are from the larger part of Fig. 2. Let q denote
the shortest path between vn,1 and vr,s used in layout from step 2 to
connect these vertices. We set x = min{a | 1 ≤ a ≤ 2n−j ∧ vj,a ∈ q}.
The minimum operator is only for syntax, since there is exactly one
vertex in the specified set. The set is not empty, because the set
{vj,a | 1 ≤ a ≤ 2n−j} is a vertex cut in BFn, so any path from vn,1

to vr,s go through it. Firstly we connect vk,1 with vj,x with at most
K hops (see 3rd item on this list) and from vj,x to vr,c we use VPs
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from step 2 (the rest of the path q). We can do it, since vj,x is pivot
in layout from step 2. The connection of vn,1 and vr,c used at most
H hops. The connection from vn,1 to vj,x uses K hops, so the rest
of the path - from vj,x to vr,s is in at most H−K hops. Combining
with path from vk,1 to vj,x, we can get from vk,1 to vr,s in at most
K + H−K = H hops.

PART B - shortest path analysis

Lemma 2 Let vr,c ∈ {va,b | 1 ≤ a ≤ k ∧ 1 ≤ b ≤ 2n−1}. Then we can get
from vk,1 to vr,c in at most H hops using shortest path.

Proof. For detailed description of shortest paths in butterfly topology
see [8]. Let p be the shortest path between vk,1 and vr,c, vr,c ∈ {va,b | 1 ≤
a ≤ k ∧ 1 ≤ b ≤ 2n−1}. There are three possibilities

• The path p does not change direction (each row between k and r is
visited exactly once). Combine VPL from step 6 and 2 to get H−K+1
hop layout for tree T

′

k,1. Since vr,c ∈ T
′

k,1 (because the path does not
change direction), we can use this combined VPL to get from vk,1 to
vr,c. Since it is common VPL for tree, the used path is the shortest
one.

• The path p changes (top-down) direction once.

– The path p starts going up (decrease row). It can be transformed
into the path p2, which changes column only before changing
direction. This can be done due to r ≤ k. The combined VPL
from step 6 and step 2 is again useful. If K < H, we get firstly
from vk,1 to v1,c using VPL for T

′

k,1. The rest of the path p2

is straight chain on column c. One hop path from the layout in
step 2 can be used to get from v1,c to vr,c. If K = H we use only
layout from step 6 and the whole procedure (vk,1 to v1,c to vr,c)
can be done in a single hop.

– The path starts downward (increasing row). This is identical
with downward path in the following case.

• The path p changes (top-down) direction twice.

– The path p starts going up (decrease row). From the properties
of shortest paths, the path must finish at row k (or below, when
r > k, but this is not the case of Lemma). Such path can be
transformed into path p2, which starts going downwards (the
necessary column changes on rows ≥ k are taken first). Use p2

in the following case.
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– The path p starts going down (increase row). If vr,c ∈ {va,b | j ≤
a ≤ k ∧ 1 ≤ b ≤ 2n−j}, we can use connection from part A,
the last but one case (the path from that construction has the
same length as p). Otherwise, we use connection from part A,
the last case. Again, the segmets between vk,1 to vj,x and vj,x

to vr,c in the path p might be replaced by equaly long segments
from this connection (The rows are not changed, only columns
are shifting differently).

2

This property is exploited in Layout 5 to get a VPL which uses only
the shortest paths for routing.
PART C - load analysis

We will look at the load contributed from each step of construction.

• Step 1. L = 0.

• Step 2. L = O(
[

N
lgN

]
1
H lg

1
HN) since it is the load of Layout 3.

• Step 3. L = 0. We only remove paths.

• Step 4. L = O(
[

N
lgN

]
1
H lg

1
HN) since the largest level of the tree Tk,1

has n−1
H + lglg

1
HN rows (see Layout 3).

• Step 5. L = O(lgN), it is the length of chains.

• Step 6. L = O(
[

N
lgN

]
1
H lg

1
HN). If K < H, the trees T

′

k,c[k − j] have

at most n−1
H + lglg

1
HN rows, so L is as stated. If K = H, the trees

T
′

k,c[k− j] have at most n−1
H − lglg

H−1
H N rows. To each path at most

lgN new paths are added, hence L = O(lgN · 2( n−1
H

−lglg
H−1
H N)) as

stated (see Layout 3).

• Step 7. L = O(
[

N
lgN

]
1
H lg

1
HN). Let a = k − j and let b be the num-

ber of rows on the lowest level in tree Tk,1 from the Layout 2 in

step 4 of construction. So a + b = n−1
H + lglg

1
HN if K < H and

a+ b = n−1
H − lglg

H−1
H N if K = H. If K < H, each path from Ti,y[b]

is prolonged by at most 2a paths (vertices of T
′

k,c[a]), leading finally to

L = O(2a2b) = O(2a+b) = O(2( n−1
H

+lglg
1
H N)) as stated (see Layout

3). If K = H, each path from Ti,y[b] is prolonged by at most 2a paths

to T
′

k,c[a], which are further prolonged by another O(lgN) paths to
chain (vid,d, . . . , vn,d). Independently, each path from Ti,y[b] is pro-
longed by O(lgN) paths to chain (vic,c, . . . , vk,c). So we have finally
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L = O(2a(2blgN + lgN)) = O(2a+blgN) = O(2( n−1
H

−lglg
H−1
H N)lgN)

as stated (see Layout 3).

Each step has a load of at most O(
[

N
lgN

]
1
H lg

1
HN), so we have

L = O(

[

N

lgN

]
1
H

lg
1
HN) = O(N

1
H ).

2

Claim 2 Let BFn be a butterfly network. Let H ≥ 2 be an upper bound
on the hop count and k be arbitrary number, 1 ≤ k ≤ n − 1. Due to the
previous layout and Theorem 2, we can construct an one-to-all VPL from
vk,1 for BFn with L = Θ(N

1
H ).

Note that the same scheme can be used for any vertex vr,c from BFn

using automorphism which maps vr,c into the vertex vr,1.
In the following VPL we exploit previous layout to get asymptoticaly

optimal one-to-all VPL from any vertex which uses shortest paths for rout-
ing.

Layout 5

Let BFn be a butterfly network. Let H ≥ 2 be an upper bound on the
hop-count. Let R ∈ BFn be any vertex of the leftmost column in BFn

(R ≡ vk,1 for some 1 ≤ k ≤ n). We construct an one-to-all VPL from R as
follows:

1. Start with empty VPL Ψ.

2. Construct one-to-all VPL for BFn from vertex vk,1 with upper bound
for hop count equal to H using Layout 4. Add all VPs from it to Ψ.

3. Construct one-to-all VPL for BFn from vertex vn−k,1 with upper
bound for hop count equal to H using Layout 4. Change top-down
orientation of BFn (use a bijection vr,c → vn−r,1+rev(c−1), where rev
is reverse function for binary numbers. Now vn−k,1 match the vertex
vk,1 from the previous step. Add all VPs (after change of orientation)
to Ψ.

Analysis of VPL. The load L is at most twice the load from Layout 4,
so it still holds

L = O(

[

N

lgN

]
1
H

lg
1
HN) = O(N

1
H ).
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Similary, we can still get from vk,1 to any vertex in at most H hops, we
only have more alternatives.

According to Lemma 2 and layout from step 2, we can get to any vertex
vr,c with r ≤ k using shortest paths. Similary, according to Lemma 2 and
layout from step 3, we can get to any vertex vr,c with r ≥ k using shortest
paths. So we can get to any vertex of BFn using the shortest paths. 2

Theorem 3 Let BFn be a butterfly network. Let H ≥ 2 be an upper bound
on the hop count and k be arbitrary number 1 ≤ k ≤ n − 1. Due to the
previous layout and Theorem 2, we can construct an one-to-all VPL from
vk,1 for BFn with L = Θ(N

1
H ) in which the shortest paths are used for

routing.

Note that the same scheme can be used for any vertex vr,c from BFn

by mapping it firstly into the vertex vr,1.

5 Conclusions

We have presented an optimal shortest path broadcast layout on butterfly
ATM networks of size N with load L = Θ(N1/H) for any hop count H. The
main question is whether such a result holds also for other O(1) bounded
degree and O(logN) bounded diameter topologies and also for all-to-all
case.
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